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Kalman filtering of states including attitudes poses a challenge due to the constraints of
the rotation manifold. One of the standard approaches is to consider a deviation attitude,
in the form of a reduced 3-vector parametrization, to some nominal reference attitude, that
the Kalman filter tracks. After an update to the statistics of this deviation, a reset step
is performed that adjusts the reference attitude. This reset step adjusts the statistics of
the deviation, which has commonly been ignored in the literature. This paper presents an
algorithm for the case when the deviation is represented as a rotation vector. The adjustment
to the mean and covariance after the reset operation is presented, assessed using Monte Carlo
sampling, and compared to other approaches used in the literature. The final result may
be easily implemented and is computationally inexpensive. Connections and comparisons to
the Multiplicative Extended Kalman Filter (MEKF), the Unscented Quaternion Estimator
(USQUE), and Lie Group Kalman Filters (LG-KF) are made, with simulations performed on
a rigid-body example.

I. Introduction

Determining the attitude of a rigid body in real-time is a problem that was investigated during the space race of
the 1960s [1] and is still a topic of research today [2–6]. Because of its computational efficiency and robustness, the

Kalman filter is an ideal choice for many applications and has been used in numerous attempts to solve the real-time
attitude estimation problem. However, applying the Kalman filter for estimating attitudes is not a trivial problem, as
shown in the literature. This is largely attributed to the lack of a vector space structure of the common singularity-free
attitude representations such as the Euler symmetric parameters, henceforth referred to as the unit-quaternion, or
rotation matrices. As a result, one has to be careful in defining a probabilistic description on such a space, let alone
applying Kalman filtering tools. Yet many works [7–14] neglect this fact by directly applying the Kalman filter to
e.g. estimating the unit-quaternion parametrization of attitude. Others have indeed pointed out that in doing so, the
practical ramifications are an ill-conditioned or even a singular covariance matrix [15]. Other works have circumvented
this problem at least in the measurement update using ad-hoc solutions, namely the pre-filtering of measurements
[15–17] which are known to produce sub-optimal estimates [17], or purposely adhering to singular and highly nonlinear
representations (i.e. Euler angles) to avoid the aforementioned problems [18].

In [19] a norm-constrained Kalman filter was introduced, which has direct applications for estimating the unit-
quaternion parametrization for attitudes. This was done for the measurement update by determining the Minimum Mean
Squared Error (MMSE) yielding Kalman update gain subject to the norm constraint of the state via Lagrange multipliers.
This yields an additive correction to the covariance update, and results in additional theoretical and computational
complexity [20].

Another approach is to consider a lower dimensional parametrization of a perturbation attitude, to some deterministic
reference attitude, that is to be tracked by the Kalman filter; this approach can be attributed to [21] from 1969. This
idea sparked a plethora of research [2, 3, 22–56], some of which have extended this general idea to other Bayesian
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inferencing schemes such as particle filtering. In the literature, this framework is often referred to as the Multiplicative
(Extended) Kalman Filter (MEKF), Indirect Kalman Filter, Sequential Kalman Filter, and Error State Kalman Filter.
After every update to this perturbation state (through either prediction via a process model and/or from a measurement
update), a so-called reset step is performed where the post-reset reference attitude is adjusted so that the post-reset
perturbation state is zero-mean. This reset step ensures that the reference attitude represents the mean attitude of the
rigid body (see Section II.B; it is not clear if this interpretation was understood previously in the literature), but more
importantly, ensures that the perturbation attitude state stays “small” so as to stay far away from singularities, as no
singularity free three-vector parametrization of rotations exists [23].

It has been noted that there is confusion regarding the adjustment to the statistics after the reset step [15, 20]. However,
[15] does present the correct adjustment when the deviation attitude is represented by two times the Gibbs-Rodrigues
vector∗. In [20], the lingering confusion was more formally addressed by formulating the reset problem, presenting a
first-order approximation to the exact adjustment for rotation vectors. A similar first-order transformation can be found
in [57].

No covariance adjustment (zero-order) and the first-order approximations can still work in practice, as shown in the
literature, if the rigid-body of interest does not rotate too quickly with respect to the sampling time, if measurements
agree well with the predicted measurements, or through tuning of the problem data. However, there will still be a loss in
accuracy. The estimate using the algorithm developed herein using a full-order reset may be expected to be of higher
quality in comparison to the previous approaches (examples can be found in Section V).

In Section II, some preliminaries are discussed regarding rotations and probabilities. In particular, a rotation vector
parametrization will be used to model the deviation attitude. In Section III, a general estimation problem set-up is
discussed, giving context for the attitude reset problem. Specifics regarding rotation kinematics typically encountered in
rigid-bodies are also presented, and a corresponding formulation is proposed; this formulation has the nice property of
being exact in discrete time. In Section IV, the full-order attitude reset is presented, with Monte Carlo and singular
value comparisons to the zero and first-order approaches. If the reader would just like the solution to implement on e.g.
the measurement update for the MEKF [23] or the USQUE [26], or to upgrade the attitude reset for the EKF or UKF
based on [20], they can jump to this section. In Section V, an example rigid-body is considered, and various EKFs and
UKFs are proposed and compared to other approaches in the literature (e.g. MEKF, LG-UKF [4], and USQUE) via
simulation. In particular, a computationally-efficient approach is presented for the proposed EKF in Remark 4.

II. Rotations

A. Parameterization and Kinematics
Henceforth rotation matrices will be used to represent attitudes for the purposes of the subsequent derivations, but it

is trivial to replace them with the unit-quaternion counterpart for practical implementations. The full-order attitude
reset map that will be developed remains the same in either case, as long as the perturbation attitude is represented as a
rotation vector.

The set of rotations is denoted by SO(3) =
{

R ∈ R3x3
�� R>R = I3×3, det(R) = 1

}
. Note that this set is not closed

under matrix addition, nor is it commutative under the matrix product. However, it does form a group with compositions
of rotations made by their matrix product [58].

Given a three-vector a = (a1,a2,a3) ∈ R
3, let its skew-symmetric matrix be

[a×] :=


0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ so(3) (1)

such that the cross product of a and another three-vector b is a × b = [a×] b, and so(3) is the set of skew-symmetric
matrices contained in R3x3. Similarly, the map that brings a skew-symmetric matrix A to its constituent three-vector is
denoted by [A]∨, that is [ [a×]]∨ = a.

The set of skew-symmetric matrices can parameterize any rotation [59], and by extension so can the three-vectors
∗A similar adjustment is presented in [34], but differs by a square-root factor.
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(since skew-symmetric matrices and three-vectors are isomorphic). This is realized using the following map

exp : so(3) → SO(3) (2)

[a×] 7→
∑
k≥0

1
k!
[a×] k =

{
I3×3 +

sin(‖a ‖)
‖a ‖ [a×] +

1−cos( ‖a ‖)
‖a ‖2

[a×] 2 : ‖a‖ , 0
I3×3 : else

(3)

where ‖·‖ denotes the two-norm of its vector argument. The vector a in the above is viewed as a rotation vector. Let
log(·) denote the corresponding inverse mapping given by

log : SO(3) → { [a×] ∈ so(3) | ‖a‖ < π} (4)

R 7→
∑
k≥1

(−1)k+1

k
(R − I3×3)

k =

{
θ(R)

2 sin(θ(R)) (R − R>) : θ(R) , 0
03x3 : else

(5)

where θ(R) := cos−1((Tr(R) − 1)/2). Note that log (exp ( [a×])) = a only if ‖a‖ < π, otherwise wrapping will occur.
See e.g. [58–61] for a more thorough treatment.

Consider the following representation for an attitude R ∈ SO(3), representing the forward frame rotation from some
arbitrary frame to some body-fixed frame of an object

R := Rref exp( [δ×]) (6)

where δ can be viewed as a perturbation rotation vector to some reference rotation Rref . The dynamics of this rotation
vector are given as below, with dependence on time t omitted, [60]:

Ûδ = ω +
1
2
[δ×] ω +

2 − ‖δ‖ cot(‖δ‖ /2)
2 ‖δ‖2

[δ×] 2 ω (7)

=: Γ(δ)−1ω (8)

which hits singularity when ‖δ‖ = 2π, ω is the relative angular velocity of the object expressed in the body frame, and

Γ : R3 → R3×3 (9)

δ 7→ Γ(δ) =

{
I3×3 −

1−cos( ‖δ ‖)
‖δ ‖2

[δ×] + ‖δ ‖−sin( ‖δ ‖)
‖δ ‖3

[δ×] 2 : ‖δ‖ , 0
I3×3 : else

(10)

Interestingly, the map Γ(·) will also be of use for a Jacobian matrix in an EKF as shown in Section III, and for the
attitude reset step in Section IV. Furthermore, Γ(δ) for ‖δ‖ , 0 can be rewritten (see Appendix A†) to yield

Γ(δ) =
1
‖δ‖2

(
δδ> + [δ×] (exp ( [δ×])> − I3×3)

)
(11)

which will reduce computation compared to (10) if exp ( [δ×]) is already computed, as will be the case in Section V.B.
It is worth noting that to first order,

Γ(δ) ≈ I3×3 −
1
2
[δ×] (12)

Γ(δ)−1 ≈ I3×3 +
1
2
[δ×] (13)

Similarly, the dynamics can be defined directly on the rotation manifold and is given by

ÛR = R [ω×] (14)
†This equivalent map seems to have been discovered recently in [62] using a very different derivation.
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B. Mean Attitude
Similar to the discussion in [15], if δ is a random three-vector in (6) with probability distribution function (PDF)

pδ(·), and thereby R is also a random variable with distribution pR(·), then naively taking the expectation of (6)

E
(R)
[R] = E

(δ)

[
Rref exp ( [δ×])

]
=

∫
R3

Rref exp ( [x×]) pδ(x) dx (15)

is to some extent meaningless, as the result will not be a rotation. This comes from the fact that SO(3) is not a
vector space.

Thus, given a probabilistic description of δ, which will be done by the Kalman filter in the subsequent section, it is
important to be clear on what the mean attitude is defined to be. First consider the vector space case: the mean µz ∈ Rn
of a random variable z with PDF pz(·) is defined to be the one that satisfies [63]

0n×1 = E
(z)
[z − µz] =

∫
Rn
(z̄ − µz)pz(z̄) dz̄ (16)

Similarly, the mean attitude herein is defined as the µR ∈ SO(3) that satisfies

03×1 = E
(R)

[ [
log

(
µ>RR

) ]∨]
=

∫
R3

[
log

(
µ>RRref exp ( [x×])

)]∨
pδ(x) dx (17)

where the law of the unconscious statistician [64] is used to get the right-hand side. If δ is zero-mean and small in the
sense that all its random variates have norm less than π, then∫

R3

[
log

((
Rref

)>
Rref exp ( [x×])

)]∨
pδ(x) dx =

∫
R3

xpδ(x) dx = 03×1 (18)

Thus, in this case, the mean attitude is Rref . This in part motivates the attitude reset step, where the statistics of δ will be
transfered in such a way so that after the reset, the mean attitude is represented by Rref and the post-reset perturbation
attitude is small in the sense of being zero-mean. When, for example, δ is a Gaussian random three-vector, and thus
infinitely many variates have norm equal to or larger than π, then (18) is only an approximation, albeit a good one if the
tails are small.

III. Problem Set-up and Solution Approach
Consider the general discrete-time process

ξ[k + 1], R[k + 1] = f̄k(ξ[k],R[k], ηproc[k]) (19)

where ηproc[k] is a zero mean white noise processes, and ξ[k] and R[k] make up the system state (including the attitude)
at time step k (both of which are random variables). If the dynamics of the system are inherently continuous (ex. the
kinematics of R as given by (14)), then the above can be obtained by some suitable discretization method.

However, it will be natural to work with the local parametrization (6) of the rotation using the rotation vector δ[k]:

R[k] := Rref
k exp ( [δ[k]×] ) (20)

where Rref
k

is the deterministic reference attitude at time k (time-indexing of random series will be done with square
brackets, and deterministic ones with subscripts). Reasons for doing so are as follows:

• As described in Section II.B, with the rotation vector living in a vector space, it is convenient to describe the
statistics of R[k] using the statistics of δ[k], particularly for computationally efficient Bayesian tracking schemes
like the EKF or UKF which presume Euclidean states. This isn’t exclusive to rotation vectors though, as e.g. the
Gibbs-Rodrigues vector can be used as described in [23]. The Gibbs-Rodrigues vector may also be better at
encoding large uncertainties [15]. However, rotation vectors may be more intuitive to work with, having the nice
property that ‖δ‖ is the angle of rotation.

• The processmodel (19)will generally involve a numerical integration scheme of the continuous time kinematics (14).
Thus to ensure that the numerical integration scheme doesn’t violate the constraint that R[k] ∈ SO(3), a projection
must be performed [65], which adds complexity (although minor in the case of unit-quaternions). This is no
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longer an issue when integrating (8), which can be done via the following using the rotation vector composition
rule [60] to avoid the singularity in (8):

δ[k + 1] =
[
log

(
exp ( [δ[k]×] ) exp

( [
δ̄(4t)×

] ) ) ]∨
=: frv(δ[k], δ̄(4t)) (21)

where δ̄(4t) is the solution to (8), evaluated at the discretization step size 4t, with initial condition δ̄(0) = 0. If
ω(t) is constant over the time interval 4t, perhaps due to a measurement from a digital gyroscope sensor, then

δ[k + 1] = frv(δ[k],ω(tk)4t) (22)

i.e. the Euler-integration scheme is exact, and where tk is the sampled time corresponding to the discrete time step
k (i.e. ω[k] := ω(tk)).

• For a certain application, it may be more natural to describe the propagation equations using the rotation vector if
it is not based on the kinematics (14) (see e.g. [66, 67], which can be extended to 3D).

Thus, by using (20), the model (19) is transformed to the following

x[k + 1] = fk(x[k], ηproc[k]) (23)

with x[k] := (ξ[k], δ[k]) ∈ Rn the new system state, and Rref
k

is absorbed into the function fk(·, ·).
Additionally, the following generic measurement model is assumed:

y[k] = hk(x[k], ηmeas[k]) (24)

where again Rref
k

is absorbed into the function hk(·, ·).
Now any Bayesian inferencing scheme can be used to track the statistics of the state x[k] using the models (23),(24),

such as the Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF)‡.

Remark 1. If the evolution of the rotation vector is as per the exact kinematics map (21), then the following Jacobians
will be needed for the EKF:

∂ frv(δ,∆)
∂δ

����
δ=0
= Γ(∆)−1 exp ( [∆×])> (25)

∂ frv(δ,∆)
∂∆

����
δ=0
= I3×3 (26)

See Appendix B for the derivation. For non-zero δ, it would become difficult to construct an analytical expression for
the Jacobians.

Next, the notion of an attitude reset is introduced. After the statistics of δ[k] are updated, via a prior using (23)
and/or posterior using (24), then introduce a new deterministic attitude Rref,post

k
and random variable δpost[k] such that

R[k] = Rref
k exp ( [δ[k]×] ) =: Rref,post

k
exp

( [
δpost[k]×

] )
(27)

with the requirement that δpost[k] be zero-mean. Henceforth, the post-reset variables Rref,post
k

and δpost[k] replace the
pre-reset ones Rref

k
and δ[k], and the Bayesian tracking scheme continues on. The reasons for performing such an

attitude reset are as follows:
• If the propagation for δ[k] is performed using the exact propagation (21), then as mentioned in Remark 1, the
Jacobians necessary for the covariance propagation in the EKF are hard to evaluate for non-zero-mean δ[k].

• Again, if the propagation is according to (21), the dynamics become exceedingly nonlinear for larger δ[k] (see
Appendix B). Thus it is in the best interest for algorithms such as the EKF or UKF to minimize the nonlinearity
such that the statistics can be tracked as accurately as possible [68, 73].

• If the propagation is performed according to a numerical integration of the continuous-time kinematics (7), then
the reset step must be performed to avoid δ[k] and its variates becoming large enough to hit singularity.

‡A particle filter could also be used. Although, one could elect to work directly on SO(3) instead of using the local parameterization (6).
However, the benefit of working with this local parametrization and employing the attitude reset is having (an approximation to) the mean attitude via
Rref , available immediately using (30), and applying the transformation (31) to each particle. Furthermore, the approach herein could be used in a
hybrid Kalman-particle filter scheme, see e.g. [68–72].
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• If δ[k] is zero-mean, then as per Section II.B, the mean attitude is available immediately via Rref
k
, rather than

having to solve for it using the mean attitude definition (17).
In any case, the filter designer may choose to perform the attitude reset whenever they want. However, for the first two
points above where the kinematics is used for prediction, the authors recommend performing the attitude reset after
every prediction and measurement update step, as will be done in the example of Section V.

As in [20], the problem of how to perform (27) can be summarized succinctly as Problem 1 in the subsequent
section. Note that the resulting transformation will also affect the cross-statistics of δ[k] and ξ[k].

IV. The Attitude Reset Problem and Solution
Problem 1. Let δ be a random three-vector whose PDF is known and Rref ∈ SO(3) some deterministic attitude.
Determine a deterministic Rref,post ∈ SO(3) and random variable δpost ∈ R3 such that the following are true:

Rref exp ( [δ×]) = Rref,post exp
( [
δpost×

] )
(28)

E
(δpost)

[
δpost] = 03×1 (29)

We present a solution to Problem 1 to first-order in δpost, that is, assuming δpost is small, but to full-order in the
pre-reset δ. This is a reasonable assumption as part of the problem requirements is for the mean of δpost to be zero,
which is some notion of “small”. Note that the related work [20] and indirectly [57] present an approximate solution to
Problem 1 with the additional assumption that the pre-reset vector δ is small.

Theorem 1. To first order in δpost, the solution to Problem 1 is

Rref,post = Rref exp ( [µ×]) (30)
δpost = Γ(µ) (δ − µ) (31)

where µ := E
(δ)
[δ].

Proof. See Appendix C. A similar result, when δ represents two times the vector part of the unit-quaternion, can be
found in Appendix D.

Remark 2. If the state x[k] as mentioned in Section III is being tracked by an EKF or UKF, then the post-reset
covariance is given by

diag
(
I(n−3)×(n−3),Γ(µ)

)
Var
(x[k])
[x[k]] diag

(
I(n−3)×(n−3),Γ(µ)

>
)

(32)

where diag (·) forms a block-diagonal matrix from its arguments.

It is important to mention that (30) was only known to be true to first-order in the pre-reset δ (and δpost). As it turns
out, this is also true to full-order in the pre-reset δ. The previous works that have neglected adjusting the post-reset
covariance can be viewed as taking Γ(µ) to zero-order, that is

Γ0(µ) := I3×3 ≈ Γ(µ) (33)

Similarly, the works [57], [20] that present the first-order solutions

Γ1(µ) := I3×3 − [µ×] /2 ≈ Γ(µ) (34)
Γexp(µ) := exp (− [µ×] /2) ≈ Γ(µ) (35)

respectively, are equivalent in the sense that they equal Γ(µ) to at most first-order.

A. Monte Carlo Assessment
The accuracy of the proposed reset (30), (31) can be quantified via Monte Carlo sampling. Henceforth, the prescript

MC(·) will be used to denote the Monte Carlo specific variables. The pre-reset MCδ are sampled from some to-be-defined
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probability distribution parameterized by some l, c ∈ R3. The post-reset MCδ
post can be computed as suggested by (30),

(28):

MCδ
post :=

[
log

(
exp

( [
−MCµ(l, c)×

] )
exp

( [
MCδ×

] ) ) ]∨ (36)

where
MCµ(l, c) := E

(MCδ |l,c)

[
MCδ

]
(37)

Due to the use of the log(·) operator, it is implied that all variates of MCδ
post have norm less than π. The post-reset

sample mean and variance is computed using (36) to see how well it conforms to (29) and (32) (with n = 3). This
process is repeated for various probability distributions of MCδ by randomly generating the parameters l, c, from which
we can construct a distribution of errors in the post-reset mean and variance.

1. Error Metrics
Given l, c ∈ R3, the PDF for each component i ∈ {0,1,2} of MCδ is given by

p
MCδi |li ,ci

(x) := U(x, ci − li/2, ci + li/2) (38)

where

U(x,a, b) :=

{
1/(b − a) : x ∈ [a, b]
0 : else

(39)

represents a uniform distribution. Using uniform distributions was intentional to avoid the wrapping caused by log(·),
assuming ‖l‖ is sufficiently small. Note that MCµ(l, c) = c.

Given the parameters l, c, 220 ≈ 106 particles are sampled and passed through the map given by (36), from which
the post-reset sample mean MCδ

post
s.mean(l, c) and sample covariance MCδ

post
s,cov(l, c) are computed to yield the following

absolute error metrics

εmean(l, c) :=



MCδ

post
s.mean(l, c)




 (40)

εcov(l, c) :=






MCδ
post
s.cov(l, c) − Γ

(
MCµ(l, c)

)
Var
(MCδ |l,c)

[
MCδ

]
Γ

(
MCµ(l, c)

)>





F

(41)

where ‖·‖F denotes the Frobenius norm of its matrix argument.

2. Ensemble Monte Carlo
We now draw various l and c to create an ensemble sample of mean errors εmean(l, c) and covariance errors εcov(l, c)

as follows:

pli (x) := U(x,0,1), i = 0,1,2 (42)

and

c :=


r cos(θ) cos(φ)
r sin(θ) cos(φ)

r sin(φ)

 (43)

pθ (x) := U(x,−π, π) (44)

pφ(x) :=

{
cos(x)/2 : x ∈ [−π/2, π/2]
0 : else

(45)

which effectively uniformly samples the sphere with radius r using the parametrization (43).
220 ≈ 106 samples of l, c are drawn for each fixed r and thus 220 values of εmean(l, c), εcov(l, c) are depicted in

Figure 1 for each r . The covariance errors are also compared against the zero-order and first-order versions of the reset
map Γ(·). The post-reset mean errors are all very small regardless of the size of the pre-reset mean, r , as expected due to

7



0.000 0.005 0.010
0

500

1000

sa
m
pl
e
de
ns
ity

r = 0.1 rad ≈ 5.7 deg

0.000 0.005 0.010
absolute mean error εmean

0

50

100

150

r = 1.0 rad ≈ 57.3 deg

0.000 0.005 0.010
0

100

200

r = 10.0 rad ≈ 573.0 deg

10−6 10−4 10−2 100
0

25

50

75

100

%
of

sa
m
pl
es

be
lo
w

Γ0(·)

Γ1(·)

Γexp(·)

Γ(·)

10−6 10−4 10−2 100

absolute covariance error εcov

0

25

50

75

100

10−6 10−4 10−2 100
0

25

50

75

100

Fig. 1 Monte Carlo assessment: each column represents distinct r values, i.e. the norm of the mean pre-reset
rotation vector. The top row shows the absolute mean errors as per (40); the bottom row shows the absolute
covariance errors as per (41) using the approximate and exact Γ(·) maps.

(30) being exact in the pre-reset variable. For example, 95 percent of the samples have mean errors less than 0.0011,
0.0092, and 0.0060, for r = 0.1, 1, and 10 rad, respectively.

For rotations, it is only meaningful to report angles modulo π, but, for example, the angle may be larger if integrating
the kinematics (8) directly, or if the evolution of the rotation vector is not based on kinematics.

The covariance errors for the full-order map are consistently small and are noticeably better than the zero and
first-order versions, especially at the larger pre-reset means. As an example, the 95th percentile errors can be found in
Table 1, below.

Table 1 95th percentile of absolute covariance errors

r [rad]
0.1 1.0 10

Γ0(·) 0.0044 0.042 0.085
Γ1(·) 0.00034 0.028 2.1
Γexp(·) 0.00019 0.0069 0.086
Γ(·) 0.00017 0.00018 0.000092

For the small r of 0.1, the first-order maps and the full-order map have errors in the same order of magnitude, with
the full-order approach outperforming Γ1(·) by a factor of 2. However, this is not the case for r = 1 and 10, as the
full-order approach outperforms the other approaches by orders of magnitude.
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B. Closed Form Comparison
The map Γ(·) can be compared to the zero-order and first-order approaches by means of a singular value analysis. Let

E0(µ) := Γ(µ) − Γ0(µ) (46)

= −
1 − cos(‖µ‖)
‖µ‖2

[µ×] +
‖µ‖ − sin(‖µ‖)

‖µ‖3
[µ×] 2 (47)

E1(µ) := Γ(µ) − Γ1(µ) (48)

=

(
−

1 − cos(‖µ‖)
‖µ‖2

+
1
2

)
[µ×] +

‖µ‖ − sin(‖µ‖)
‖µ‖3

[µ×] 2 (49)

Eexp(µ) := Γ(µ) − Γexp(µ) (50)

=

(
−

1 − cos(‖µ‖)
‖µ‖2

+
sin(‖µ‖ /2)
‖µ‖

)
[µ×] +

(
‖µ‖ − sin(‖µ‖)

‖µ‖3
−

1 − cos(‖µ‖ /2)
‖µ‖2

)
[µ×] 2 (51)

be the error matrices when µ , 0, the difference between the full-order reset matrix Γ(µ) and the respective
approximations used in literature. A reasonable scalar metric is the spectral norm (or largest singular value), given by
[74]

εi(µ) := ‖Ei(µ)‖ := max
‖x ‖=1

‖Ei(µ)x‖ =
√
λmax (Ei(µ)>Ei(µ)), i ∈ {0,1,exp} (52)

where λmax (·) denotes the maximum eigenvalue of its matrix argument.
Observing that both error matrices have the structure of c1 [µ×] + c2 [µ×]

2 for some scalars c1 and c2, the following
fact will prove useful.

Fact 1. Let µ ∈ R3. The eigenvalue-eigenvector pairs of a matrix of the form(
c1 [µ×] + c2 [µ×]

2
)> (

c1 [µ×] + c2 [µ×]
2
)

(53)

are given by

Eigenvalue Eigenvector
0 µ

(c1 ‖µ‖)
2 + (c2 ‖µ‖

2)2 µ⊥

where µ⊥ is a vector that satisfies µT µ⊥ = 0.

Proof. Verifiable by direct substitution.

Thus by Fact 1,

ε0(µ) =
1
‖µ‖

√
‖µ‖2 − 2 ‖µ‖ sin(‖µ‖) − 2 cos(‖µ‖) + 2 (54)

ε1(µ) =
1

2 ‖µ‖

√
‖µ‖4 + 4 ‖µ‖2 cos(‖µ‖) − 8 ‖µ‖ sin(‖µ‖) − 8 cos(‖µ‖) + 8 (55)

εexp(µ) = 1 −
2 sin(‖µ‖ /2)
‖µ‖

(56)

Note that these errors do not depend on the direction of the argument µ, rather only its magnitude. Figure 2 shows
the plots of the above error terms. Interestingly, there are domains over which the zero-order map is more accurate than
the first-order approaches, which is consistent with the results in Figure 1. It is useful to note that for small ‖µ‖,

ε0(µ) ≈ ‖µ‖ /2 (57)

ε1(µ) ≈ ‖µ‖
2 /6 (58)

εexp(µ) ≈ ‖µ‖
2 /24 (59)
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Fig. 2 Spectral norms of the difference between the full-order attitude reset matrix Γ(µ) and its zero/first-order
approximations, as defined in (52), over varying magnitudes of the rotation vector argument. A zoomed-in plot
is shown on the right.

Loosely speaking, for a Kalman filtering application where the pre-reset mean is not large, that is, in the prediction
step either the sampling time is sufficiently small or the motion itself is slow, and corrections due to the measurements are
small in the measurement update, the first-order map Γ1(·) will be a very good approximation. Furthermore, additional
terms from the series given in (112) can be used for a better approximation. However, when computational expense is of
no issue, the full-order map Γ(·), which already is of little complexity (and the same complexity as Γexp(·)), should
always be used for improved accuracy. For implementations of the EKF/UKF that already use the zero or first-order
maps (33)-(35) in the attitude reset, a simple replacement with Γ(·) yields an upgrade to a full-order attitude reset.

Remark 3. Although the EKF approximates the mean and covariance propagations to first and third order, respec-
tively [73], a lower order attitude reset (independently) adds an additional source of error. For example, a measurement
update could still lead to a large jump in the estimated state, and thus a full-order covariance reset will be beneficial to
help mitigate the overall statistical tracking error; see Section V for an example. This can also be seen in Table 1, where
for a pre-reset mean of 1 rad the 95th percentile covariance errors for Γ1(·) are 156 times as large as the 95th percentile
covariances errors for the full-order Γ(·).

V. Rigid-body Example

A. System
Consider the following rigid body system:

Ûp(t) = v(t) (60a)
Ûv(t) = R(t)a(t) (60b)
ÛR(t) = R(t) [ω(t)×] (60c)

where p(t) ∈ R3 is the position, v(t) ∈ R3 is the velocity, R(t) ∈ SO(3), a(t) := (1 |cos(t)| ,10 |sin(t)| ,100 |cos(t)|)m/s2

is the body-frame acceleration vector, and ω(t) := (10 |sin(t)| ,1 |cos(t)| ,0.1 |sin(t)|) rad/s is the body-frame angular
velocity. The system is simulated numerically using the “embedded Runge-Kutta Prince-Dormand” method [75]. The
initial conditions are set to p(0) := (100,100,100)m, v(0) := (10,10,10)m/s, and R(0) := exp ( [(0,0, π/2)×] ).

Each estimator will have a noise-free accelerometer sensor that reads a(t), and a gyroscope sensor that reads ω(t)
but corrupted with zero-mean white noise with variance 0.01 rad2/s2 per axis. Both sensors are digital and are read
at a rate of 1000 Hz. Additionally, a GPS-like sensor provides position readings at 10 Hz and is also corrupted with
zero-mean white noise with variance 100 m2 per axis. It can be shown that the system is (locally) observable. All noise
is generated from Gaussian distributions. All estimators are initialized to believe that the initial position and velocities
are zero, and the initial attitude is given by the identity matrix.

The source code for the simulation and all filters tested can be found in Supplementary Material S1.
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B. Proposed EKF
The system (60) is discretized using a sample rate of 4t = 0.001 s. The discretized model uses a combination of a

simple Euler integration and the exact rotation propagation (22):
p[k + 1]
v[k + 1]
δ[k + 1]

︸      ︷︷      ︸
=:x[k+1]

=


p[k] + v[k]4t + Rref

k
exp ( [δ[k]×] ) ak4t2/2

v[k] + Rref
k

exp ( [δ[k]×] ) ak4t
frv(δ[k], (ω[k] + ηω[k])4t)

︸                                                       ︷︷                                                       ︸
=: fk (x[k],ηω [k])

(61)

with Var
(ηω [k])

[ηω[k]] = 0.01I3×3, and ak is the deterministic body-frame acceleration measured at time-step k. Now

applying the standard EKF formulas [73], we have for the mean prediction step:

p̂k+1 |k = p̂k |k + v̂k |k4t + Rref
k ak4t2/2 (62a)

v̂k+1 |k = v̂k |k + Rref
k ak∆τ (62b)

δ̂k+1 |k = frv(δ̂k |k,ωmeas
k
4t) = ωmeas

k
4t (62c)

where ωmeas
k

is the realization of the random measurement (note this gives the a-priori mean if there is no prior
knowledge available on the angular velocity), and in (62c) it is assumed that δ̂k |k = 0, i.e. an attitude reset was just
performed before-hand. The covariance propagation is given by

P̂k+1 |k = Ak P̂k |k A>k +Q (63a)

Ak =



I3×3 4t I3×3 −Rref
k
[ak×] 4t2/2

03×3 I3×3 −Rref
k
[ak×] 4t

03×3 03×3 Γ(ωmeas
k
4t)−1 exp

( [
−ωmeas

k
4t×

] )


(63b)

where P̂k+1 |k is the estimate of the a-priori covariance of the state x[k + 1], with P̂0 |0 := diag (I6×6,0.1I3×3) for this and
all following estimators, and Q = diag

(
06×6,0.014t2I3×3

)
. Next the attitude reset is applied as follows:

Rref
k+1 = Rref

k exp
( [
δ̂k+1 |k×

] )
(64a)

P̂k+1 |k ← diag
(
I6×6,Γ(δ̂k+1 |k)

)
P̂k+1 |k diag

(
I6×6,Γ(δ̂k+1 |k)

>
)

(64b)

δ̂k+1 |k ← 0 (64c)

Remark 4. The propagation equations (62)-(64) can be combined, where the Γ(·) in (64b) cancels with the Γ(·)−1 in
the Jacobian Ak , yielding the following consolidated propagation equations:

p̂k+1 |k = p̂k |k + v̂k |k4t + Rref
k ak4t2/2 (65a)

v̂k+1 |k = v̂k |k + Rref
k ak∆τ (65b)

δ̂k+1 |k = 0 (65c)

Rref
k+1 = Rref

k exp
( [
ωmeas
k
4t×

] )
(65d)

P̂k+1 |k = Āk P̂k |k Ā>k + diag
(
I6×6,Γ(ω

meas
k
4t)

)
Q diag

(
I6×6,Γ(ω

meas
k
4t)>

)
(65e)

Āk =



I3×3 4t I3×3 −Rref
k
[ak×] 4t2/2

03×3 I3×3 −Rref
k
[ak×] 4t

03×3 03×3 exp
( [
ωmeas
k
4t×

] )>


(65f)

11



For computational efficiency, the exp
( [
ωmeas
k
4t×

] )>
term in Āk should be computed first, and then Γ(ωmeas

k
4t), for the

transformation on Q, can be computed efficiently using the compact map (11).

The posterior, or measurement update, is given by
p̂k |k
v̂k |k

δ̂k |k

 =

p̂k |k−1

v̂k |k−1

03×1

 + Kk

(
ymeas
k
− pk |k−1

)
(66a)

P̂k |k = (I9×9 − KkC) P̂k |k−1 (66b)

where C =
[

I3×3 03×3 03×3

]
and Kk is the Kalman gain using the standard KF formulas [73]. Afterwards, the

attitude reset is applied again:

Rref
k ← Rref

k exp
( [
δ̂k |k×

] )
(67a)

P̂k |k ← diag
(
I6×6,Γ(δ̂k |k)

)
P̂k |k diag

(
I6×6,Γ(δ̂k |k)

>
)

(67b)

δ̂k |k ← 0 (67c)

This algorithm is called “ekf-zoh-reset-F” in Figure 3, since it is an EKF based on the exact propagation map (22)
for a zero-order-hold assumption on the angular rates, and uses a (F)ull-order attitude reset.

Remark 5. It can be shown that the proposed EKF herein is equivalent to the LG-EKF of [76] when applied to the
proposed model (61). The difference is the derivation, where here it is done directly in the context of attitudes and using
the attitude reset perspective. This may make it more accessible to formulate EKFs for other systems, where e.g. some
inherent discrete-time process model is used directly for the rotation vector, as mentioned in Section III, allowing for a
direct implementation without further derivations.

C. Other EKFs
One common EKF approach is to model the propagation of δ using an approximation for the rotation vector

kinematics (7) [52, 54–56, 77]:

δ[k + 1] = δ[k] + (I3×3 + [δ[k]×] /2) ((ω[k] + ηω[k])4t) (68)

and when performing the attitude reset step in the prediction (64), to use a first-order approximation Γ(·) ≈ Γ1(·).
This results in the mean propagation being the same as (62). The covariance propagation are different in that the
Γ(ωmeas

k
4t)−1 exp

( [
−ωmeas

k
4t×

] )
term in Ak in (63) is replaced with the approximation I3×3 −

[
ωmeas
k
×

]
4t/2. The

measurement updates are the same as (66), and the attitude reset step (67) after the measurement update is applied,
again using the first-order approximation Γ(·) ≈ Γ1(·). This algorithm is called “ekf-euler-reset-1” in Figure 3, as the
filter equations are equivalent to the case when an Euler discretization of the continuous-time kinematics of the rotation
vector (7) is used, and a first-order approximation for the covariance resets is used (both during the prediction and
measurement update).

Another common variant is to take the “ekf-euler-reset-1” filter and omit the post measurement covariance reset
step (67b), and is called “ekf-euler-reset-0”.

Figure 3 shows the estimator performances for the above EKFs. Both are able to recover the system state, but it is
clear that the full-order “ekf-zoh-reset-F” is able to do this more quickly and much more consistently with less spread.
What is interesting is that if the initial velocity error were to increase, such that v(0) = (100,100,100)m/s, then the
“ekf-euler-reset-1” fails completely; see Figure 4. What happens here is that the covariance matrix becomes poorly
conditioned, which can happen if δ becomes large in Γ1(δ) when applying the covariance reset.
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Fig. 3 Position, velocity, and attitude errors of the EKFs described in Sections V.B-V.C. 100 simulations were
performed, and the solid lines represent the median values, while the shaded regions represent the 25 to 75
percentile region.
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Fig. 4 Position, velocity, and attitude errors of the EKFs described in Sections V.B-V.C, but with v(0) =
(100,100,100)m/s. 100 simulations were performed, and the solid lines represent the median values, while the
shaded regions represent the 25 to 75 percentile region.

D. MEKF [23]

1. Original
The MEKF algorithm of [23], which is formulated in continuous-time, is adapted to fit the example rigid-body

system (60). The mean propagation are implemented in discrete-time using (65a)-(65d) for simplicity and consistency.
The covariance propagation is adapted to fit the system, yielding

Û̂P(t) = F(t)P̂(t) + P̂(t)F(t)> +Qc (69a)

F(t) =



03×3 I3×3 03×3

03×3 03×3 −Rref
k

exp
( [
ωmeas
k
(t − tk)×

] )
[ak×]

03×3 03×3

[
−ωmeas

k
×

]


(69b)

and Qc = diag (06×6,0.014t I3×3) [73]. Since the covariance propagation is formulated in continuous-time, they are
implemented using an Euler integration scheme, as done in e.g. [78], with a step-size of 4tmekf (see Algorithm 1),
between successive discrete time steps. Computational and implementation aspects favour using such a simple integration
scheme, and more accurate integration will yield more accurate results; the parameter 4tmekf will be varied to explore
this. Note that no explicit attitude reset step is done in the prediction step, as this is already done implicitly.
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Algorithm 1: Euler integration of the MEKF covariance propagation (69)

input: Covariance matrix P̂k |k , sampled accelerometer and gyroscope measurements ak,ωmeas
k

, the reference
attitude Rref

k
, integration step size 4tmekf , discretization time step 4t.

output: a-priori covariance matrix P̂k+1 |k .
P̂k+1 |k ← P̂k |k ;
N ← 4t/4tmekf ;
for j ← 1 to N do

F ←



03×3 I3×3 03×3

03×3 03×3 −Rref
k

exp
( [
ωmeas
k
( j − 1)4tmekf×

] )
[ak×]

03×3 03×3

[
−ωmeas

k
×

]

;

P̂k+1 |k ← P̂k+1 |k +
(
FP̂k+1 |k + P̂k+1 |kF> +Qc

)
4tmekf ;

end

The measurement update is the same as (66). The attitude reset following the update is also the same as (67), except
that the covariance reset (67b) does not occur. This filter is called “mekf-0” in Figure 5.

2. Proposed Modifications
In the attitude reset following the measurement update, the step (67b) is performed. This filter is called “mekf-F”.

Another variant could be to use a first-order approximation Γ(·) ≈ Γ1(·) in (67b), and is called “mekf-1”.
As mentioned in [23], due to the approximations used to derive the filter, the deviation attitude δ in the MEKF

can be interpreted to be either a rotation vector as done thus far, two times the Gibbs-Rodrigues vector, or two times
the vector part of the unit-quaternion. Thus, following the measurement update (66), two additional versions of the
attitude reset (67) are tested: the first is with the exp(·) map in (67a) replaced with expG(·), mapping two times the
Gibbs-Rodrigues vector to the rotation manifold (see e.g. [23, equation (18b)]), and Γ(·) in the covariance reset (67b) is
replaced with ΓG(·):

Γ
G(δ) =

1
1 + ‖δ‖2 /4

(I3×3 − [δ×] /2) (70)

the proof of which can be found in the appendix of [15]. This filter variant is called “mekf-G”.
Similarly, the other variant is to replace the exp(·) map in (67a) with expqv(·), mapping two times the vector part of

the unit-quaternion to the rotation manifold (see e.g. [23, equation (18d)]), and Γ(·) in the covariance reset (67b) is
replaced with Γqv(·):

Γ
qv(δ) =

1√
1 − ‖δ‖2 /4

(
I3×3 + [δ×]

2 /4
)
− [δ×] /2 (71)

the proof of which can be found in Appendix D. Note that Γqv(·) has a singularity and is ill-defined for ‖δ‖ ≥ 4, which
can cause problems by creating an ill-conditioned covariance matrix for an application where large resets are to be
applied. This filter variant is called “mekf-qv”.

The results are shown in Figure 5. The MEKF is sensitive to the integration scheme used to solve (69), as the figure
on the left using the larger 4tmekf causes all MEKF variants to perform worse than “ekf-zoh-reset-F”. Similar to the
previous result in Figure 4, the first-order “mekf-1”, and the “mekf-qv”, result in poorly conditioned covariance matrices
resulting in failure of the estimators, even though the “mekf-0” is still able to recover the state trajectory (on average).
The “mekf-G” also performs well, although with more spread than the “ekf-zoh-reset-F”.

The covariance propagation for the MEKF was derived by using the continuous-time kinematics and using the
quaternion equivalent of (14). This is in contrast to the approach of the “ekf-zoh-reset-F”, where the covariance
propagation is derived directly in discrete-time using the exact discretization map (22). Thus it is expected that the
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MEKF performance (using the correct attitude resets) approaches the performance of the “ekf-zoh-reset-F” in the
limit as 4tmekf → 0, although for the MEKF this means an increase in computational complexity [26]. This is exactly
what happens for the smaller 4tmekf in the right of Figure 5, where now the full-order variants “mekf-F”, “mekf-G”,
and “mekf-qv” perform similar to “ekf-zoh-reset-F”, both in terms of average performance and consistency, while
outperforming the “mekf-0” and “mekf-1” variants.
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Fig. 5 Position, velocity, and attitude errors of the MEKF using various attitude resets as described in Sec-
tion V.D. 100 simulations were performed, and the solid lines represent the median values, while the shaded
regions represent the 25 to 75 percentile region. The left figure is for 4tmekf = 4t = 0.001 s; the right figure is for
4tmekf = 4t/100 = 0.00001 s, taking roughly 100x the computation time. The “ekf-zoh-reset-F” from Section V.B
is shown for reference.

E. Proposed UKF
Begin by generating the sigma-points x(i)

k |k
=

(
p(i)
k |k
, v
(i)

k |k
, δ
(i)

k |k

)
, i = 0, . . . ,2n (with n = 9 in this case), for the

system (61), using the state covariance P̂k |k and any sigma-point generation method [73, 79]. Since the process noise is
non-additive in the dynamics map (61), the system state can be augmented to include the process noise, yielding 6
additional sigma points in this case. However for simplicity and consistency with the other UKFs discussed later, the
process noise will be incorporated using the standard EKF approach. The sigma-points are propagated forward:

x(i)
k+1 |k := fk(x

(i)

k |k
,0), i = 0, . . . ,2n (72)
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The mean a-priori state is then taken to be the weighted sum

x̂k+1 |k :=
2n∑
i=0

w
(i)
m x(i)

k+1 |k (73)

where w(i)m are weighting coefficients [73, 79]. Similarly, the a-priori covariance is estimated

P̂k+1 |k :=
2n∑
i=0

w
(i)
c

(
x(i)
k+1 |k − x̂k+1 |k

) (
x(i)
k+1 |k − x̂k+1 |k

)>
+Q (74)

where Q = diag
(
06×6,0.014t2I3×3

)
is the same as before, and w

(i)
c are weighting coefficients [73, 79]. Now proceed

with the post-prediction attitude reset (64)§.
Since the measurement model is linear in the system state, the measurement update is the same as (66). The

post-measurement attitude reset (67) is applied. This filter is called “ukf-zoh-reset-F” in Figure 6.

F. LG-UKF [4]
The LG-UKF algorithm of [4] is adapted to fit the example rigid-body system. The propagation equations are similar

to the previous subsection, except that the sigma-points for the rotation are computed directly on SO(3) as follows:

R(i)
k+1 |k = Rref

k exp
( [
δ
(i)

k |k
×

] )
exp

( [
ωmeas
k
4t×

] )
, i = 0, . . . ,2n (75)

The mean rotation Rref
k+1 is computed numerically via [4, Algorithm 1], written in Appendix E using the convention of

this paper. The covariance propagation is computed as follows:

P̂k+1 |k :=
2n∑
i=0

w
(i)
c d(i)d(i)

>
+Q (76)

d(i) :=
(
p(i)
k+1 |k − p̂k+1 |k, v

(i)

k+1 |k − v̂k+1 |k,

[
log

((
Rref
k+1

)−1
R(i)
k+1 |k

)]∨)
(77)

No attitude reset is performed, as this is done implicitly. Furthermore, note that the process noise covariance matrix Q is
not transformed, where the approximation Γ(ωmeas

k
4t) ≈ Γexp(ω

meas
k
4t) is used, which as shown in Section IV.B, is a

very good approximation for small ωmeas
k
4t. This combined with the fact that Q is diagonal (as in [4] and in this case),

results in diag
(
I6×6,Γexp(ω

meas
k
4t)

)
Q diag

(
I6×6,Γexp(ω

meas
k
4t)

)>
= Q. However, this will not be true for non-isotropic

process noise.
The measurement update is the same as before in (66) - (67). This filter is called “lg-ukf” in Figure 6.

G. USQUE [26]

1. Original
The USQUE, presented in [26], is adapted to fit the example rigid-body system. As originally presented using the

generalized Rodrigues parameters, two times the Gibbs-Rodrigues vector will be used herein. Thus the exp(·) map in
the system model (61), used to propagate the position and velocity sigma-points, is replaced with the expG(·) map. The
rotation sigma-points are propagated as follows:

R(i)
k+1 |k := Rref

k expG
( [
δ
(i)

k |k
×

] )
exp

( [
ωmeas
k
4t×

] )
, i = 0, . . . ,2n (78)

However, based on equation (36) and (37a) of [26], it is presumed that R(0)
k+1 |k represents the mean a-priori attitude, and

thus Rref
k+1 := R(0)

k+1 |k . Since δ̂
(0)
k |k
= 0, this essentially means that the USQUE does an EKF approximation for the mean

§The attitude reset presented herein is true to first-order in the post-reset deviation attitude. Thus, for a situation where large uncertainty in the
attitude is expected, the LG-UKF may perform better. Nevertheless, the proposed UKF can be viewed as an upgrade to the approach in [20, 53].
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attitude propagation (see e.g. (65d)). The covariance propagation is computed as follows:

P̂k+1 |k :=
2n∑
i=0

w
(i)
c d(i)d(i)

>
+Q (79)

d(i) :=
(
p(i)
k+1 |k − p̂k+1 |k, v

(i)

k+1 |k − v̂k+1 |k,

[
logG

((
Rref
k+1

)−1
R(i)
k+1 |k

)]∨)
(80)

where logG(·) maps the rotation element on SO(3) back to two-times the Gibbs-Rodridgues vector (see e.g. [26,
equation (20)]). Thus the USQUE is very similar to the LG-UKF, except that the mean attitude propagation is done using
an EKF approximation, and the deviation attitude δ is viewed as two times the Gibbs-Rodrigues vector (or generalized
Rodrigues parameters). Again, there is no transformation applied to the process noise covariance matrix Q (note
that [26] does present a method for integrating Qc using a trapezoidal integration scheme and under the assumption that
ω4t is small, which would result in adding a factor Q/2 to P̂k |k when generating the sigma-points in the propagation
step, and replacing Q in (79) with the same factor, in this case). The measurement update is the same as before in (66),
and the attitude reset (67) with exp(·) replaced with expG(·), except the covariance reset (67b) does not occur. This filter
is called “usque-0” in Figure 6.

2. Proposed Modification
One obvious modification is to perform the covariance adjustment after the measurement update (67b), with Γ(·)

replaced with the Gibbs version ΓG(·) given in (70), and will be called “usque-G”. Another approach is to additionally
perform a UKF mean propagation, which can be done by solving for the propagated mean either numerically using
an approach like the LG-UKF, or using an attitude reset approach like the proposed UKF. This, however, will not be
explored in this paper.

The results for the above UKFs are shown in Figure 6. The sigma points are generated using the scheme outlined
in [73, Section 14.2], and applying the scaling from [79] with α = 1 and β = 2. The “ekf-zoh-reset-F”, “ukf-zoh-reset-F”,
“lg-ukf”, and the “usque-G” all behave similarly, and perform better than “usque-0” both in terms of average and
consistency of errors.
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Fig. 6 Position, velocity, and attitude errors of the UKFs described in Sections V.E-V.G. 100 simulations were
performed, and the solid lines represent the median values, while the shaded regions represent the 25 to 75
percentile region. The “ekf-zoh-reset-F” from Section V.B is shown for reference.

VI. Conclusions
Theorem 1 establishes the relationship between the pre-reset and post-reset attitude error states to full-order in

the former and first-order in the latter. This can be used in an EKF and UKF for a general problem set-up involving
attitudes. The proposed full-order reset step and the proposed EKF and UKF algorithms are computationally efficient
and easy to implement. The full-order reset also offers a free upgrade to any of the zero or first-order variants used in
practice. Comparisons are also made with the MEKF and the USQUE using various attitude reset schemes, showing
that a full-order reset can be beneficial.

Appendix

A. Equivalent Γ(·) map
By [74, Fact 3.5.25], [a×] 2 = aa> − ‖a‖2 I3×3, thus (10) can be rewritten to

Γ(a) =
sin(‖a‖)
‖a‖

I3×3 −
1 − cos(‖a‖)
‖a‖2

[a×] +
‖a‖ − sin(‖a‖)
‖a‖3

aa> (81)

Rearranging,

Γ(a) =
1
‖a‖2

aa> +
sin(‖a‖)
‖a‖3

(
−aa> + ‖a‖2 I3×3

)
−

1 − cos(‖a‖)
‖a‖2

[a×] (82)
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Again by [74, Fact 3.5.25], [a×] 3 = − ‖a‖2 [a×] , thus

Γ(a) =
1
‖a‖2

aa> +
sin(‖a‖)
‖a‖3

(
− [a×] 2

)
+

1 − cos(‖a‖)
‖a‖4

[a×] 3 (83)

=
1
‖a‖2

aa> +
1
‖a‖2

[a×]
(
−

sin(‖a‖)
‖a‖

[a×] +
1 − cos(‖a‖)
‖a‖2

[a×] 2
)

(84)

=
1
‖a‖2

aa> +
1
‖a‖2

[a×] (exp ( [−a×]) − I3×3) (85)

=
1
‖a‖2

aa> +
1
‖a‖2

[a×]
(
exp ( [a×])> − I3×3

)
(86)

B. Derivation of (25)-(26)
Lemma 1. If X, Y, Z ∈ so(3) with

exp(Z) = exp(X) exp(Y ) (87)

then,

Z = X +
−adX

exp(−adX ) − 1
(Y ) +O

(
Y2

)
(88)

= Y +
adY

exp(adY ) − 1
(X) +O

(
X2

)
(89)

where ad denotes the matrix Lie-group adjoint mapping adX (Y ) := XY − Y X , the k-th power of adX denotes its k-th
iterate with ad0

X (Y ) = Y , and exp(A) =
∑

k≥0
1
k! Ak . See [61] for a more thorough treatment.

Proof. Equation (88) can be obtained by performing straightforward manipulations to the integral form of the
Baker-Campbell-Hausdorff (BCH) formula (5.8) of [61].

For (89), start with:

exp(Z(t)) = exp(tX) exp(Y ) (90)

The goal is to determine Z(1), with Z(0) = Y , minding the slight abuse of notation with Z versus Z(t). Taking the
derivative, from [61, equation (5.11)] we have

d exp(Z(t))
dt

= exp(Z(t))
1 − exp(−adZ(t))

adZ(t)

(
ÛZ(t)

)
= X exp(tX) exp(Y ) (91)

= X exp(Z(t)) (92)

Thus,

1 − exp(−adZ(t))

adZ(t)

(
ÛZ(t)

)
= exp(−Z(t))X exp(Z(t)) (93)

= Adexp(−Z(t)) (X) (94)
= exp(−adZ(t))(X) (95)

where [61, Proposition 3.35] was used. Thus,

ÛZ(t) =
adZ(t)

1 − exp(−adZ(t))
exp(−adZ(t))(X) (96)

=
adZ(t)

exp(adZ(t)) − 1
(X) (97)

=
log(exp(adtX ) exp(adY ))
exp(adtX ) exp(adY ) − 1

(X) (98)

= ḡ(exp(adtX ) exp(adY ))(X) (99)
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where [61, Theorem 3.28] was used, log(A) :=
∑

k≥1
(−1)k+1

k (A− I)k , and ḡ(A) :=
∑

k≥0
(−1)k
k+1 (A− I)k . Thus, an alternate

integral form of the BCH is

Z = Y +
∫ 1

0
ḡ(exp(adtX ) exp(adY ))(X)dt (100)

and thus by performing straightforward manipulations yields (89).

Using (89), (21) becomes

frv(δ,∆) = ∆ +


ad [∆×]

exp(ad [∆×] ) − 1
( [δ×])︸                        ︷︷                        ︸

=: [ξ×]

+O
(
[δ×] 2

)

∨

(101)

where ∆ := δ̄(4t) for brevity. Resolving the middle term,( exp(ad [∆×] ) − 1)
ad [∆×]

)
[ξ×] = [δ×] (102)(

exp(ad [∆×] )
1 − exp(−ad [∆×] )

ad [∆×]

)
[ξ×] = (103)

Note that [
ad [x×] ( [y×])

]∨
= [( [x×] [y×] − [y×] [x×])]∨ (104)
= [x×] y (105)

⇔

[
adk
[x×] ( [y×])

]∨
= [x×] k y (106)

where the second equality comes from [74, Fact 3.5.25]. Thus,[(
exp(ad [∆×] )

1 − exp(−ad [∆×] )
ad [∆×]

)
[ξ×]

]∨
= δ (107)(

exp( [∆×])
1 − exp(− [∆×])

[∆×]

)
ξ = (108)

exp( [∆×])Γ(∆)ξ = (109)

⇔ ξ = Γ(∆)−1 exp(− [∆×])δ (110)

where for the step from (108) to (109) the following is used¶:
¶A similar relationship can also be found in [80, 81] without derivation.
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1 − exp(− [∆×])
[∆×]

=
I −

∑
k≥0(− [∆×])

k/k!
[∆×]

(111)

=
∑
k≥0

(−1)k

(k + 1)!
[∆×] k (112)

=
∑
k≥0

(
(−1)2k

(2k + 1)!
[∆×] 2k +

(−1)2k+1

(2k + 2)!
[∆×] 2k+1

)
(113)

=

(
I3×3 +

∑
k≥1

(−1)3k−1 ‖∆‖2k−2

(2k + 1)!
[∆×] 2 +

∑
k≥0

(−1)3k+1 ‖∆‖2k

(2k + 2)!
[∆×]

)
(114)

=

(
I3×3 +

∑
k≥0

(−1)k ‖∆‖2k

(2k + 3)!
[∆×] 2 +

∑
k≥1

(−1)k ‖∆‖2k−2

(2k)!
[∆×]

)
(115)

=

(
I3×3 +

1
‖∆‖2

(
1 −

1
‖∆‖

∑
k≥0

(−1)k ‖∆‖2k+1

(2k + 1)!

)
[∆×] 2 +

1
‖∆‖2

(∑
k≥0

(−1)k ‖∆‖2k

(2k)!
− 1

)
[∆×]

)
(116)

=

(
I3×3 +

1
‖∆‖2

(
1 −

1
‖∆‖

sin(‖∆‖)
)
[∆×] 2 +

1
‖∆‖2

(cos(‖∆‖) − 1) [∆×]
)

(117)

= Γ(∆) (118)

where the following is used to go from steps (113) to (114):

[x×] 2k+1 = (−1)k ‖x‖2k [x×] , k = 0,1,2, . . . (119)

[x×] 2k = (−1)k−1 ‖x‖2k−2 [x×] 2 , k = 1,2, . . . (120)

Thus,

frv(δ,∆) = ∆ + Γ(∆)−1 exp( [∆×])>δ +
[
O

(
[δ×] 2

)]∨
(121)

from which (25)-(26) is obtained. Note that from (121), the non-linearity in the map increases as δ increases.

C. Solution to Problem 1
Since Rref,Rref,post ∈ SO(3), there exists some deterministic µ ∈ R3 such that

Rref exp ( [µ×]) = Rref,post (122)

Thus,

Rref exp ( [δ×]) = Rref,post exp
( [
δpost×

] )
(123)

⇒ exp ( [δ×]) = exp ( [µ×]) exp
( [
δpost×

] )
(124)

Using (88),

[δ×] = [µ×] +
−ad [µ×]

exp
(
−ad [µ×]

)
− 1

( [
δpost×

] )
+O

( [
δpost×

] 2
)

(125)

⇒ δ = µ +

[
−ad [µ×]

exp
(
−ad [µ×]

)
− 1

( [
δpost×

] )
+O

( [
δpost×

] 2
)]∨

(126)

Throwing away higher order terms in δpost,

δ ≈ µ +
[µ×]

I − exp ( [−µ×])
δpost (127)
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Thus,

δpost ≈
I − exp ( [−µ×])

[µ×]
(δ − µ) (128)

= Γ(µ)(δ − µ) (129)

where (118) was used. The above is linear in the random variables δ and δpost, therefore the constraint (29) implies that
µ = E

(δ)
[δ].

D. Solution to Problem 1 when δ is two times the vector part of the unit-quaternion
Rearranging (124) and using quaternion algebra [82],

q(δpost) = q(−µ) � q(δ) (130)

where

q :
{

x ∈ R3�� ‖x‖ ≤ 2
}
→

{
(a, v), a ∈ R, v ∈ R3�� |a|2 + ‖v‖2 = 1

}
(131)

x 7→

[
a
v

]
=

1
2

[√
4 − ‖x‖2

x

]
(132)

maps two times the vector part of the unit-quaternion to the unit-quaternion [23], and

q1 � q2 = (a1, v1) � (a2, v2) =

[
a1a2 − v

>
1 v2

a1v2 + a2v1 + v1 × v2

]
(133)

Thus,

apost
δ = aµaδ + µ>δ/4 (134)
δpost = aµδ − aδµ + δ × µ/2 (135)

where aµ =
√

1 − ‖µ‖2 /4 and aδ =
√

1 − ‖δ‖2 /4. Continuing,

δpost =
a2
µδ − aµaδµ

aµ
− µ × δ/2 (136)

=
a2
µδ − (a

post
δ − µ>δ/4)µ

aµ
− µ × δ/2 (137)

=

a2
µδ −

(√
1 − ‖δpost‖2 /4 − µ>δ/4

)
µ

aµ
− µ × δ/2 (138)

=
a2
µδ −

(
1 +O

(

δpost


2

)
− µ>δ/4

)
µ

aµ
− µ × δ/2 (139)

As in Appendix C, throwing away high-order terms in δpost,

δpost ≈
a2
µδ −

(
1 − µ>δ/4

)
µ

aµ
− µ × δ/2 (140)

=

(
1 − ‖µ‖2 /4

)
δ −

(
1 − µ>δ/4

)
µ√

1 − ‖µ‖2 /4
− µ × δ/2 (141)

Using [74, Fact 3.5.25], [µ×] 2 = µµ> − ‖µ‖2 I3×3, and noting that [µ×] µ = 0, the above becomes

δpost ≈ Γqv(µ)(δ − µ) (142)

where Γqv(·) is given in (71). The above is linear in the random variables δ and δpost, therefore the constraint (29)
implies that µ = E

(δ)
[δ]. The authors would like to acknowledge one of the reviewers for this result.
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E. Computation of the Mean Attitude for the LG-UKF

Algorithm 2: Weighted intrinsic mean on SO(3).

input: Set of rotations R(i) with associated weights w(i)m , i = 0, . . . ,n, and an integer N > 0.
output: The weighted mean Rref .
Rref ← R(0);
for j ← 0 to N do

∆←
∑n

i=0 w
(i)
m log

(
Rref−1R(i)

)
;

Rref ← Rref exp (∆);
end
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