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ABSTRACT A calibration framework for an ultra-wideband localization system employing inertial measure-
ment units is presented. No external motion capture system or other sensors are required for the calibration
procedure. Given a covariance function for the error in the range measurements, a range measurement model
based on a Gaussian process is obtained by maximizing the joint likelihood of angular rate, acceleration,
and range measurements. The framework is experimentally evaluated, and it is shown how the resulting
measurement model, integrated in a standard Kalman filter, can be used for real-time localization on
a platform with limited computational resources. The calibration significantly improves the localization
accuracy for randomly generated trajectories and different localization system setups.

INDEX TERMS Gaussian processes, maximum likelihood estimation, sensor fusion, ultra wideband
technology.

I. INTRODUCTION
Ultra Wideband (UWB) technology enables low-cost and
low-power communication and localization with centimeter
accuracy using the same radio transceiver chip [1]. These
properties make UWB a potential key technology for the
Internet of Things. However, integrating or attaching a UWB
transceiver to a device poses many challenges for the tech-
nology to achieve the aforementioned accuracy. Often UWB
antennas with a small form factor, ideally integrated in a
printed circuit board, are required for portable devices. These
specifications make omnidirectional antenna design a chal-
lenging task for wide bandwidth. Furthermore, these antennas
are often mounted on structures or devices that reflect the
UWB pulses back towards the antenna, causing the reflected
signal to overlap and interfere with the line-of-sight pulse.
Although UWB systems feature certain inherent robustness
to multipath effects thanks to their short pulse duration, they
are not immune to them when pulses overlap [2].

In our previous work [3] we showed that these effects
can be partially learned and compensated for using a range
measurement model based on Gaussian processes. This paper
extends our previous work providing more detailed analytical
and experimental results, showing

• how to calibrate such a range measurement model
without ground truth data,

• how to calibrate UWB module-dependent delays,
• how parameter choices impact the performance of the
framework.

The paper is structured as follows: Section II reviews
related work. A Gaussian process model for the UWB range
measurement error is introduced in Section III. A maximum
likelihood approach to train this model with inertial mea-
surement unit (IMU) and UWB data only is presented in
Section IV. Implementation details of the framework are
given in Section V, where it is also explained how the result-
ing model can be integrated in a Kalman filter framework.
An experimental evaluation of the proposed framework is
presented in Section VI and remarks on future work are made
in Section VII. Note that while the symbols and notation are
introducedwith their first appearance, there is also a overview
in the Appendix A..

II. RELATED WORK
The error in the range measurements acquired by a UWB
localization system depends on many factors. Errors in
clock synchronization, errors in estimating the arrival time
of an incoming signal, uncompensated internal propagation
delays, multipath propagation and non-line-of sight condi-
tions (NLOS) can all affect the accuracy of a range estimate.
Although significant amount of research has investigated the
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FIGURE 1. A schematical drawing of the setup used for data collection is shown in (a). The coordinate systems of the tag
and the anchor are denoted by T and A, respectively; and the azimuth and elevation angles are denoted by αA, αT and
βA, βT, respectively. The quadcopter platform is pictured in (b). It is visible that UWB pulses from certain directions need to
pass the quadcopter body before arriving at the UWB antenna.

effects of obstacles in the far field of the transmitting and
receiving antenna (summarized in, for example, [4]), less
research has been directed at mitigating the effects of the
immediate antenna surrounding, which can cause multipath
overlays in the UWB pulse from the direct path in line-of-
sight conditions [5]. Additionally, since objects in the near-
field of antennas change the antennas’ radiation patterns [6],
it is generally recommended to keep the near-field free of
obstacles. However, this is often not possible in small form-
factor, mobile or portable devices [2].

Previous work addressing these real-world problems
include [7]–[10]. The effects of angle dependent waveform
distortion due to non-ideal antenna design and UWB pulse
overlaps on timing estimation are studied in [7], and a new
leading edge detection algorithm is proposed that is less
sensitive to these effects. If the same antenna in the same
immediate surrounding is used, these variations can be com-
pensated for by building a model for the resulting range
measurement error. This is done in [8] where a lookup table
is used to correct for angle and signal strength-dependent
ranging errors. More recently, machine learning techniques
have been used to model the correlation between the received
UWB pulse waveform and the resulting error in the range
measurement. Both [9] and [10] use properties of the received
waveform, such as the pulse rise time or the signal strength as
features for machine learning algorithms modeling the range
measurement error.

However, to build and verify such models for the range
measurement error, labeled training data is often required
which may not always be available. The work presented here
shows how such a model can be obtained without ground
truth data. Instead it adapts a calibration procedure shown
to work well for combined camera and IMU parameter esti-
mation [11] and extends it to a more complex UWB range
model with correlated measurement errors and varying noise
variance (heteroscedastic noise [12, p. 273]).

III. RANGE MEASUREMENT MODEL
The most often used, simple range measurement model
assumes that the measured range zr between a mobile UWB
module (hereafter known as the tag) and a fixed UWB mod-
ule (hereafter known as an anchor) is the exact distance,
corrupted by zero mean, normally distributed measurement
noise ηr with variance σ 2

r . In the following, let the range
vector pointing from the tag antenna to the anchor antenna
be denoted by r (see Fig. I). Furthermore, let Zr denote
the set of all range measurements and let the values of the
measured range, the range vector and the noise for a specific
range measurement i ∈ Zr be denoted by zr,i, ri and ηr,i,
respectively. Hence, the standard range measurement model
is given as

zr,i = ‖ri‖ + ηr,i, (1)

where ‖ · ‖ denotes the Euclidean norm.

A. RANGE MEASUREMENT ANALYSIS
To assess the suitability of such a measurement model for
a real-world application, in which a small UWB-antenna is
integrated in a mobile device or robot, the followingmeasure-
ments were taken. AUWBmodule integrated on a quadcopter
platform serving as the tag constantly ranged to an anchor
module at a fixed position on the ground. By commanding
the quadcopter to yaw around its thrust axis while hovering
at different positions, range measurements over different rel-
ative poses of the two antennas to each other were collected
along with ground truth data provided by a motion capture
system. This procedure was repeated three times employing
different UWB modules. More details on this setup, depicted
in Fig. I, are provided in Section V.

The range measurement error e, i.e. the difference between
the exact distance and the measured range

e = ‖r‖ − zr, (2)
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FIGURE 2. The error in range measurements taken over different relative poses is shown (see Fig. I for a definition of the angles).
Measurements using different UWB module pairs are shown in different colors.

is shown in Fig. 2 for selected relative poses. Since the
ranging antennas’ z-axes were aligned during the experi-
ments, the relative poses are fully described by the range ‖r‖,
the azimuth αT and elevation βT angles of the tag, and the
azimuthαA and elevation βA angles of the anchor. It is evident
that the error in the range measurement is systematic and
should not be modelled as white noise. The figure further
reveals that the error is correlated with the relative pose of
the two ranging modules. This correlation is attributed to the
non-omnidirectional radiation pattern of the UWB antenna
and to the fact that reflected UWB pulses from the antenna’s
immediate surrounding might overlap with the UWB pulse
from the direct signal path. Given a UWB pulse width of
roughly 2 ns [13], such overlaps exist if the indirect path is
less than 0.6 m longer than the direct path. With the antenna
fixed on a mobile device or robot, these reflections are a
functions of the direction of the incoming UWB pulse.

B. RANGE MEASUREMENT MODELING WITH A
GAUSSIAN PROCESS
The previously described correlation between the relative
pose of the two ranging antennas and the error in the range
measurement can be captured by a Gaussian process which
assumes that the measured ranges are noisy observations of
a unknown function f (r) having the range vector r expressed
in the tag frame T (see Fig. I) as input argument, i.e.

zr,i = f (ri)+ ηr, i. (3)

A Gaussian process for this function is completely specified
by its mean m(r) and covariance function k(r, r′) [14, p. 13],
i.e.

m(r) = E [f (r)] (4)

k(r, r′) = E
[
(f (r)− m(r))

(
f (r′)− m(r′)

)]
. (5)

The mean function is chosen to be the expected value of
the standard range measurement model

m(r) = ‖r‖ . (6)

We later discuss in Section III-C how to adapt the mean
function in case of constant, UWB module specific offsets.

The covariance function is chosen to be

k(r, r′) = θ0 exp
(
−

1− rTr′
‖r‖‖r′‖

θ1︸ ︷︷ ︸
angle term

−

(
‖r‖ −

∥∥r′∥∥
θ2

)2

︸ ︷︷ ︸
distance term

)
, (7)

where θ0, θ1, θ2 are adjustable parameters. Given two range
measurements i, j ∈ Zr, this covariance function models the
similarity of ranging errors ei and ej as a function of the angle
between the incomingUWBpulses to the tag (angle term) and
the difference in the distance the UWB pulses have to travel
(distance term), i.e.

ei = ‖ri‖ − zr,i (8)

cov(ei, ej) = k(ri, rj)+ δijσ 2
r , (9)

where δij is the Kronecker delta which is one iff i = j
and zero otherwise. Hence, if range measurements i, j were
made in roughly the same direction, the angle term of (7)
would be small. If they were also made over roughly the
same distances, the distance term of (7) would also be small,
resulting in k(ri, rj) ≈ θ0. To the contrary, if either the
directions or the distances of the two measurements were
very different, the covariance function value would only be
a fraction of θ0. This behavior is defined by the values of
θ1 and θ2, and is visualized in Fig. 3. We show in Appendix B
that k(r, r′) is a valid covariance function.
Note that the range vector r is not a full parameteriza-

tion of the relative pose. Nonetheless the previously defined
Gaussian process for the function f (r) is able to describe the
measured range well, as shown in Section VI. Other Gaussian
processes for functions having the complete relative pose as
input arguments, or for functions describing the ranging error
with properties of the received waveform as used in [10],
are not investigated in this work. Nonetheless, the framework
presented hereafter is applicable to any Gaussian process
describing the range measurement model.

The application of a standard Gaussian process can
be computationally demanding when using many training
points. To lower the computational demand, the sparse
Gaussian process using pseudo input points (SPGP)
is employed. This sparse approximation to a Gaussian
Process was first presented in [15] and is now termed
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FIGURE 3. The value of the covariance function k(r, r′) given in (7) is shown as a function of r ∈ span(nT
x ,n

T
y )

while keeping r′ fixed. For example, for r as explicitly shown in the first plot, it evaluates to k(r, r′) = 1
2 θ0.

For purpose of comparison, the three plots were made with different values of the kernel parameters θ1
and θ2 — in the framework described in Section IV, these parameters are optimized to maximize the data
likelihood.

fully-independent training conditional sparse Gaussian pro-
cess [16]. A complete introduction to the SPGP is beyond
the scope of this paper; therefore, only the necessary prelim-
inaries for further discussion are provided and the reader is
referred to [15] and [16] for more details. While a standard
Gaussian process model directly uses its N training data to
infer the posterior distribution over the measured range zr, test
for the test range vector rtest, the SPGP performs the inference
via M latent variables (where M � N ), termed pseudo
input points. In the following we denote the mean and the
variance of this posterior distribution given by the SPGP with
SPGPm(rtest) and SPGPσ 2 (rtest), respectively. This distribu-
tion is fully defined by the SPGP’s mean and covariance func-
tion with parameters θ0, θ1 and θ2, its training data, which
consist of N range vectors 0 = [r0, r1, . . . , rN−1] and the
corresponding measured ranges zr =

[
zr,0, zr,1, . . . , zr,N−1

]
,

and the location of its M pseudo input points 0̄ =

[r̄0, r̄1, . . . , r̄M−1]. A nice property of the SPGP is that input-
dependent noise can be modeled by altering the location of
the pseudo input points.
When comparing the error characteristics in Fig. 2 for line-

of-sight and non-line-of-sight conditions (non-line-of-sight:
βT = 10 deg and αT 6∈ [−140 deg, 140 deg]), it is visible
that the error is less repeatable for range measurements in
non-line-of sight conditions. The lack of confidence in pre-
dicting the measured range for such regions can be mod-
eled by input-dependent noise when employing the SPGP as
previously mentioned.
The parameters of the SPGP2 := (0̄, θ0, θ1, θ2) are found

by maximizing the likelihood of the training data. In the
following, we denote withK00 ,K0̄0̄ , andK00̄ the covariance
matrices, whose entries are given by evaluating the covari-
ance function for all pairs of training points, pseudo input
points, and combinations of training and pseudo input points,
respectively. Denoting with m the vector of stacked mean
function evaluations for the training range vectors, the likeli-
hood of the range measurements is given as [15]

p2(zr|0) = N (zr|m,K00̄K
−1
0̄0̄
K T
00̄
+3+ σ 2

r I ), (10)

where 3 = diag(K00 − K00̄K
−1
0̄0̄
K T
00̄

) and where I is the
identity matrix of size N . Maximizing this likelihood with

respect to the parameters2moves the location of the pseudo
input points 0̄ outside regions with high variance, hence to a
certain extent it can model input dependent noise.

C. EXTENSION FOR MODULE SPECIFIC OFFSETS
Small manufacturing and assembly differences of the UWB
modules can cause differences in internal propagation delays,
resulting in offsets in the range measurements. These offsets
can vary from module to module and are generally identified
in a separate calibration routine as outlined in [17]. For
example, in Fig. 2 the range measurement error shown in
orange appears to have a constant offset to the error of the
other two datasets obtainedwith different UWBmodule pairs.
To accommodate these module specific offsets when working
with multiple anchors, the mean function of the Gaussian
Process given in (6) can be replaced by

m(r) = ‖r‖ − o, (11)

where o denotes the constant offset associated to the tag-
anchor module pair with which a rangemeasurement is taken.
The offsets for all module pairs o are included in the param-
eter set of the SPGP, 2 := (0̄, θ0, θ1, θ2, o).

IV. MODEL LEARNING
To train the range measurement model based on a Gaussian
process presented in Section III-B, labeled training data
(0, zr) is necessary. Historically, this required UWB localiza-
tion system developers to collect ground truth data using a
more accurate system, such as a infrared motion capture sys-
tem. However, UWB localization technology aims to replace
other more expensive systems. Using these other systems
in a calibration routine is therefore undesirable. In contrast,
consumer grade inertial measurement units (IMUs) are cheap
and can be found in most mobile devices. Furthermore, they
are often integrated with tag devices.
This section shows how calibration of a UWB range mea-

surement model can be performed using only UWB range and
inertial measurements adapting the continuous-time batch
optimization framework presented in [18] and used in [11]
to calibrate a camera-IMU setup.

78722 VOLUME 6, 2018



A. Ledergerber, R. D’Andrea: Calibrating Away Inaccuracies in UWB Range Measurements

A. THE MAXIMUM A POSTERIORI ESTIMATE
Consider a tag equipped with an IMU and a UWB module
moving through a space equipped with anchors at known
locations while collecting accelerometer, angular rate and
UWB range measurements. The sets of these measure-
ments are denoted by Zacc, Zgyr and Zr, respectively. Let
x(t) = (p(t),R(t), bacc(t), bgyr(t)) denote the tag’s state over
the entire experiment, described by the position trajectory
of the tag antenna p(t) given in the inertial frame, the rota-
tion R(t) from the inertial to tag frame T , and the trajectories
of the accelerometer bacc(t) and gyroscope bgyr(t) biases.

Using Bayes’ rule, the maximum a posteriori estimate of
the trajectory is written as

p2
(
x(t)|Zacc,Zgyr,Zr

)
=
p2(Zacc,Zgyr,Zr|x(t))p2(x(t))

p2(Zacc,Zgyr,Zr)
. (12)

Assuming that the sensor measurements are conditionally
independent given x(t), and assuming that only the range
measurements are dependent on the parameters 2, the pos-
terior is rewritten as

p2
(
x(t)|Zacc,Zgyr,Zr

)
=
p(Zgyr|x(t))p(Zacc|x(t))p2(Zr|x(t))p(x(t))

p(Zacc,Zgyr,Zr)
. (13)

The maximum a posteriori estimate of the state trajectory x(t)
and the parameters 2 can be found by minimizing the nega-
tive logarithm of the posterior{
x∗(t),2∗

}
= argmin

x(t),2
( − log (p(Zacc|x(t)))− log

(
p(Zgyr|x(t))

)
− log (p(Zr|x(t),2))− log (p(x(t)))), (14)

where the term log
(
p
(
Zacc,Zgyr,Zr

))
was not considered

as it does not influence the optimized values. All terms on
the right hand side of (14) are specified in the following
two subsections.

B. THE MEASUREMENT LIKELIHOODS
Assuming that the accelerometer measurements are
conditionally independent given x(t) and have a Gaussian
distribution, their likelihood is given by

p(Zacc|x(t)) =
∏

k∈Zacc

p(zacc,k |x(tk )) (15)

p(zacc, k |x(tk )) = N (zacc, k |hacc(x(tk )), 6acc), (16)

where zacc,k denotes the value of the accelerometer measure-
ment k ∈ Zacc and where x(tk ) is used to denote the tag’s
state at the time measurement k was taken. The covariance
matrix of the accelerometer measurement noise is denoted
by 6acc, and hacc is used to denote the deterministic part
of the accelerometer measurement model which is further
specified in Appendix C. The likelihood of the angular rate
measurements can be calculated similarly and their measure-
ment model is also given in Appendix C.

The range measurementsZr are not conditionally indepen-
dent given x(t), but are correlated according to the covariance
function given in Section III-B. In order to find their like-
lihood given x(t), the range vectors ri, i ∈ Zr need to be
expressed as function of the state x(t), i.e.

ri(x(ti)) = RT(ti) (ai − p(ti)) ∀i ∈ Zr, (17)

where p(ti) and R(ti) denote the position and the attitude
of the tag when the range measurement i is obtained, and
where ai denotes the position of the anchor module with
which the range measurement i is taken. According to (10),
the likelihood of the range measurements is then given as

p2(Zr|x(t)) = N
(
zr|m,K00̄K

−1
0̄0̄
K T
00̄
+3+ σ 2

r I
)

(18)

where m,K0,0̄ and 3 are all calculated as a function of the
state x(t) via (17), and where zr is the vector of stacked
measured ranges zr,i, i ∈ Zr.

C. THE PRIOR
As outlined in [18], if a model for the tag’s state evolution is
at hand, it can be used to specify a prior on the state trajectory.
Given the evolution function 8(x(t)) and continuous-time,
additive, Gaussian process noise with covariance Q, the tag’s
state evolves as follows:

ẋ(t) = 8(x(t))+ w(t). (19)

Using this model, the prior on the state trajectory is given as

p(x(t)) ∝ p(x(tstart)) exp
(
−
1
2

∫ tend

tstart
dT(τ )Q−1d(τ )dτ

)
,

(20)

where d(t) = ẋ(t) − 8(x(t)) and where p(x(tstart)) denotes
the prior belief of the initial state which is assumed to be
Gaussian-distributed. If the ratio of the number of optimiza-
tion variables to the number of measurements is large, such
a prior becomes important as it can serve as a regularizer [18].

D. THE POSTERIOR RANGE MEASUREMENT MODEL
Given the optimized parameters 2∗, the measured ranges
zr,i, i ∈ Zr and the range vectors calculated with the max-
imum a posteriori state estimate ri(x∗(ti)), i ∈ Zr, the SPGP
defines a posterior distribution over the function f (r) as men-
tioned in Section III-B. Hence the range measurement model
using this SPGP is given as

zr,i = SPGPm(ri)+
√
SPGPσ 2 (ri)η1, (21)

where η1 is zero mean additive Gaussian noise with unit
variance. The computational cost to evaluate this range mea-
surement model is O(M ) for the mean and O(M2) for the
variance using an SPGP with M pseudo input points [15].
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V. IMPLEMENTATION AND INTEGRATION IN A
KALMAN FILTER FRAMEWORK
The previously described framework to calibrate an UWB
range measurement model was implemented and experimen-
tally evaluated. This section provides implementation details
and shows how the extracted range measurement model can
be integrated in a Kalman filter framework, which can be run
in real-time on a device with limited computational power.

A. B-SPLINE REPRESENTATION OF THE CONTINUOUS
TIME STATE TRAJECTORY
The continuous-time state trajectory x(t) is expressed using
standard, uniform cubic B-splines for the position trajec-
tory p(t) expressed in the inertial frame and using cumulative,
uniform cubic B-splines [19], [20] for the quaternion q(t)
describing the rotation R(t) from the inertial frame to the
tag frame T . The biases of the accelerometer bacc(t) and the
gyroscope bgyr(t) are both modelled using standard, uniform
cubic B-splines.

The spacing of the knots for the position and quaternion
splines is set to 50 ms and the splines describing the biases of
the IMU have a spacing of 5 s.

B. SOFTWARE AND HARDWARE
The optimization routine is implemented in Tensorflow [21].
This permits easy use of the computational power of the
GPU and Tenserflow’s automatic differentiation facilitated
the implementation.

The UWB modules used on the tag and the anchors were
DWM 1000 modules [22] configured with the settings given
in Table 1. The anchor microcontroller is a STM32f4 and
the tag microcontroller is a Snapdragon flight board. The
tag module ranges with the anchors at 200 Hz by employing
the two-way ranging algorithm with repeated reply described
in [23].

TABLE 1. The settings of the DWM1000 modules used for ranging.

The MPU9250 IMUmodule, integrated on the snapdragon
flight board, provides angular rate and acceleration measure-
ments with a frequency of 1 kHz.

The quadcopter platform serving as the tag uses the frame,
motors and motor controllers of an Ascending Technology
Hummingbird and is equipped with the DWM 1000 module
and the Snapdragon flight board. The frame is made of carbon
fiber and some magnesium rods which both reflect UWB
pulses to a certain extent.

C. INTEGRATION IN A KALMAN FILTER FRAMEWORK
The optimization procedure given in (14) allows us to esti-
mate the state of a rigid body given a batch of IMU and

range measurements. On platforms with limited computa-
tional power such as wearables, this optimization cannot be
performed in real-time. However, using one of the methods
outlined in [24], the range measurement model obtained
through the batch optimization given in (21) can be integrated
in a Kalman filter which recursively estimates the state.

To investigate the gain in localization accuracy when
employing the calibrated rangemeasurement model, it is used
to update a Kalman filter which estimates the tag’s position p,
its velocity v, both expressed in the inertial frame, and its
orientation with respect to the inertial frame R ∈ SO(3).
By using the acceleration zacc and the angular rate zgyr mea-
sured with the IMU as inputs to the filter, its state evolves as

ṗ = v (22)

v̇ = Rzacc + g (23)

Ṙ = RJzgyrK×, (24)

where g is the gravitational acceleration expressed in the
inertial frame and where JzgyrK× denotes the matrix form of
the cross product, defined such that JzgyrK×b = zgyr×b for all
b ∈ R3. The measurement noise of the IMU is encoded as the
process noise using the standard Kalman filter formulation.
While the prediction step of this filter is performed using an
extended Kalman filter update step, the measurement update
step is performed using the unscented transform [24].

VI. EXPERIMENTAL RESULTS
All experiments were performed in the FlyingMachineArena
of ETH Zurich [25]. This arena is equipped with a motion
capture system providing ground truth data for all exper-
iments with an accuracy of the order of millimeters and
milliradians at 200 Hz.

A. DATA COLLECTION
A quadcopter equipped with an IMU and a UWB mod-
ule autonomously flew random trajectories while constantly
logging data. It was fusing the measurements in the state
estimator presented in Section V-C, but used the standard
UWB range measurement model given in (1). Its state esti-
mate served as an initial guess for the optimization routine

FIGURE 4. The anchors’ coordinate systems and the random trajectory
flown during data collection are shown. Note that the quadcopter was
yawing around its thrust axis while taking range measurements to all
depicted anchors.
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FIGURE 5. A selection of the measured (blue) and the fitted (orange) quantities for the trajectory visualized in Fig. 4 are shown in plots (a) to (d); (a) the
x-axis value of zacc and hacc(x∗(t)), (b) the z-axis value of zgyr and hgyr(x∗(t)), (c) zr and SPGPm(r(x∗(t)) obtained with one anchor, (d) e and
eSPGP(r(x∗(t))) along with the predicted uncertainty bounds ±2

√
SPGP

σ2 (r(x∗(t))) for one anchor. Plot (e) shows the position error
∥∥p(t)− p∗(t)

∥∥ of the
trajectory optimized with the proposed range measurement model (solid orange) and of the trajectory optimized with the standard range measurement
model (green dash-dotted).

given in (14) and was logged in addition to the IMU and
range measurements. The anchor placement and the random
trajectory flown are depicted in Fig. 4. The flight time was
approximately 130 s resulting in about 130000 IMUmeasure-
ments and 25000 range measurements.

B. MODEL FIT
The optimization of (14) was performed with the collected
data. The tag’s state trajectory x(t) was initialized with the
state estimated during data collection. No prior as outlined
in Section IV-C was given on this state trajectory, except for
the bias states for which a first order random walk model was
assumed.

The number of pseudo input points was M = 30 and
all initial values for the parameters 0̄, θ0, θ1 and θ2 were
randomly initialized as further discussed in Section VI-D.
The standard deviation of the range measurement was fixed
at σr = 0.05 m and all anchor-tag module specific biases o
were initialized with zero.

Figure 5 shows the fit of the acceleration along the
x-axis in plot (a) and the fit of the angular rate around the
z-axis in plot (b). The fit of the other axes look similar.
Even though the accelerometer measurements are very noisy
due to the vibrations induced by the spinning motors, these
IMU measurements prove to be sufficient to learn a range
measurement model. The fit of the predicted measured range
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FIGURE 6. The left plot shows the the range measurement error e calculated with the ground truth measurements of the
motion capture system for the experiment shown in Fig. 4. The error is plotted over the azimuth αT and elevation βT of the
tag antenna (see Fig. I for a definition of these angles). The right plot shows the range measurement error predicted by the
model eSPGP(r), which was obtained using only inertial and UWB range measurements. Note that the range and the
module biases also influence the predicted error aside from the azimuth αT and elevation βT angle. This explains the
discontinuities visible in the right plot.

FIGURE 7. The variance of the residual range measurement error eres (left), calculated by binning the measurements based
on the azimuth and elevation angle, and the predicted variance (right) plotted over the azimuth αT and elevation βT of the
tag antenna (see Fig. I for a definition of these angles). The white dots are the locations of the pseudo input points 0̄
projected into the azimuth-elevation plane. The NLOS regions clearly show a higher variance.

given by this model, i.e. SPGPm(r), is shown in plot (c) for
one anchor. Plot (d) shows the fit of the associated predicted
error in the measured range eSPGP given as

eSPGP = ‖r‖ − SPGPm(r) (25)

to the errors e calculated with the ground truth data. The
uncertainty bounds ±2

√
SPGPσ 2 (r) are shown in gray. The

standard deviation of the error in the range measurements e
to all anchors is 0.13 m while the standard deviation of the
residual error eSPGP

eres = e− eSPGP (26)

is 0.11 m. The last plot (e) in Fig. 5 shows the error in
the optimized position trajectory ‖p(t)− p∗(t)‖. The root
mean squared error (RMSE) of this trajectory is 0.08 m.
For comparison, the error in the position of a trajectory
optimized with the standard range measurement model as
given in (1) is shown in green. The RMSE of this second
trajectory is 0.14 m. Hence, the rather modest reduction of the
standard deviation of the range measurement error by a factor
of 0.11/0.13 = 0.8 concurs with a reduction in the RMSE of
the position by a factor of 0.08/0.14 = 0.6. Given Gaussian
range error distributions, one would expect these factors to be
equal [26]. However, as described in Section III-A, the range
error does not show a Gaussian distribution, instead it is
correlated and has outliers in certain regions. This might
explain the larger improvement in the RMSE of the position
with the range measurement model given in (3).

The actual and the predicted error for all range measure-
ments is plotted over the azimuth αT and elevation angle βT
in Fig. 6. Note that the discontinuities in the predicted error

arise from the different distances over which the range mea-
surements were taken which also influence the range mea-
surement error along with the direction of the incoming UWB
signal. It is visible that the optimization procedure given
in (14) was able to extract an accurate range measurement
error model without using ground truth data.

Looking at the predicted variance and the location of the
pseudo input points in Fig. 7, it is visible how the SPGP
can model heteroscedastic noise by moving the pseudo input
points away from regions with a lot of noise or model
uncertainty. The left plot in this figure shows the variance
of binned range measurements based on their azimuth and
elevation angle. The region with non-line-of-sight conditions
clearly shows a higher predicted and measured variance. Also
the region along the antenna x-axis, where the antenna gain is
smallest [22], shows a higher variance. The model obtained
from the optimization procedure also seems to capture these
regions.

C. MODEL APPLICATION TO OTHER DATASETS
To see how well the obtained range measurement model
generalizes to other trajectories and setups, it was applied
to the following four datasets including the dataset used for
training to investigate over fitting.

• Dataset 1: The training dataset of the UWB range mea-
surement model

• Dataset 2: A dataset recorded with the same anchor
setup, but with a different trajectory

• Dataset 3: A dataset recorded with the same anchor
setup, but with a different trajectory and a different
DWM1000 tag module
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• Dataset 4: A dataset recorded with a different anchor
setup, with a different trajectory but with the same
DWM1000 tag module

The standard deviation of the range measurement error and
the standard deviation of the residual range measurement
error of all datasets is given in Table 2. Independent of the
trajectory flown, the tag’s DWM1000 module or the anchor
setup, the standard deviation could be reduced by 2 cm. The
model obtained was further integrated in a Kalman filter
as outlined in Section V-C and tested on the datasets. For
comparison, a Kalman filter employing the standard range
measurement model as given in (1) was also run on the
datasets. The RMSE of their position estimates, denoted by
RMSE(p̂KF, prop.) and RMSE(p̂KF, std.), respectively, are also
shown in the table. Note that the standard deviation of the
range measurement noise for the Kalman filter employing
the standard model had to be increased from σr = 0.05 m
to σr = 0.13 m to compensate for the unmodelled error char-
acteristics. Without this measure, the estimate would diverge.

TABLE 2. Performance on datasets (1 training, 2 different trajectory,
3 different tag module and trajectory, 4 different anchor setup and
trajectory), all values are given in meters.

Comparing the RMSE of the position estimate obtained
with the Kalman filters with the one obtained from the
batch optimization for dataset 1 given in Section VI-B, i.e.
0.16 m vs. 0.14 m for the standard model and 0.10 m vs.
0.08 m for the proposed model, it is visible that the batch
optimization approach outperforms the recursive Kalman fil-
ter approach.

As Dataset 3 was recorded with a different DWM1000 tag
module, showing a different module specific delay, the off-
sets o for tag-anchor module pairs (as discussed in
Section III-C) were off by a constant value, which explains
the smaller reduction in the RMSE of the position estimate
in Dataset 3. However, by comparing the reported range of

the old and the new tag module to a specific anchor, this
constant value can be determined and the offsets can be
updated. Using the updated offsets, the RMSE of the KF
employing the proposed range measurement model could be
further reduced while the the RMSE of the KF employing
the standard range measurement model stayed approximately
the same. The values obtained with the updated offsets are
marked with an asterisk ∗ in Table 2.

D. GAUSSIAN PROCESS PARAMETER INITIALIZATION
The optimization of the parameters for Gaussian processes,
i.e. θ0, θ1, θ2, 0̄ and o in our case, is usually not a convex
problem [27]. A common approach to tackle this issue is to
run the optimization with multiple starting points sampled
from a prior distribution, and choosing the optimized values
with the smallest loss at the end.

To investigate how sensitive the optimization procedure
was to the number of pseudo input pointsM , their initial val-
ues and the initial values of parameters θ0, θ1 and θ2, the opti-
mization was run multiple times using different initial values
for a given number of pseudo input points M . The pseudo
input points were randomly sampled from the unit sphere and
then multiplied by a sample drawn from the uniform distri-
bution U‖r̄‖(1, 7). The parameters θ0, θ1 and θ2 were sam-
pled from the uniform distributions Uθ0 (0.1, 1),Uθ1 (0.1, 3)
and Uθ2 (1, 10). The anchor-tag module specific offsets were
always initialized with zero.

Using the optimized models the standard deviation of
the residual range measurement error, stdDev(eres), and the
RMSE of the position estimate of a KF employing these
models, RMSE(p̂KF, prop), were calculated. The values for
datasets 1 and 4 are shown in Fig. 8.While the initial values of
the parameters do not seem to play amajor role, the number of
pseudo input points should not be too large or too small. It is
apparent that aboutM = 30 pseudo input points are needed to
capture the error characteristics. More points only lead to an
improvement in the training data set, but not to an improve-
ment in a dataset obtained with a different anchor setup and
trajectory. When using less thanM = 30 pseudo input points,
there is still an improvement in the standard deviation of the

FIGURE 8. The figure shows the effect of random parameter initialization and different number of pseudo input points M on the
standard deviation of the residual ranging error and the the RMSE of the position estimate obtained by the Kalman filter employing the
model. The black lines show the standard deviation of the range measurement error and the RMSE of the position estimate obtained
by a Kalman filter run with the standard range measurement update. (a) Dataset 1. (b) Dataset 4.
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residual error, but the position estimate of the Kalman filter
sometimes diverges. Looking at these cases, it was visible that
the parameters converged to values resulting in a too small
predicted variance for regions with a lot of model uncertainty.
Hence for the proposed kernel and application, M should be
chosen to be between 30 and 70.

TABLE 3. Mathematical symbols in alphabetical order.

VII. OUTLOOK
A framework was presented for improving real-world UWB
localization accuracy by compensating for biases and other
effects caused by non-idealities in the antennas and other
environmental influences.

The measured range was modeled assuming only a depen-
dence on the relative pose of two ranging modules. Other
dependencies, such as a dependence on the received wave-
form or the received signal strength, and other kernels
should be investigated as well and might lead to a further
improvement in the localization accuracy, as only part of
the range measurement error could be captured by the range
measurement model presented. Parametric models not based
on Gaussian processes should also be tested as they could
lead to simpler, more accessible models.

The model obtained could also be improved by increasing
the signal to noise ratio of the IMU measurements. This
could be done by better damping the IMU or by flying more
aggressive maneuvers during data collection.

Finally, it would also be interesting to apply the presented
framework to other sensors with only partially known mea-
surement functions and heteroscedastic noise.

APPENDIX A
NOTATION
Generally, scalars and vectors are denoted by small, standard
font and small, bold font letters, respectively. Matrices are
written with capitalized Latin or Greek letters. Table 3 lists
the symbols in alphabetical order. The subscripts i, j ∈ Zr,
k ∈ Zacc, and l ∈ Zgyr denote the values of variables
for specific measurements. E.g., for a specific range mea-
surement i ∈ Zr, we denote the measured range as zr,i,
the vector connecting the two ranging antennas as ri, and the
measurement time as ti.

APPENDIX B
VALID COVARIANCE FUNCTION
The function k(r, r′) given in (7) must be positive semi-
definite to be a valid covariance function [14, p. 79]. Instead
of showing the positive semi-definiteness directly, we show
that the function k(r, r′) is a multiplication of two valid
covariance functions, which also results in a valid covariance
function [12, p. 296]. The proposed covariance function can
be decomposed into two factors

k(r, r′) = θ0 exp

−1− rTr′
‖r‖‖r′‖

θ1
−

(
‖r‖ −

∥∥r′∥∥
θ2

)2


=

√
θ0 exp

−1− rTr′
‖r‖‖r′‖

θ1


×

√
θ0 exp

−(‖r‖ − ∥∥r′∥∥
θ2

)2
. (27)

While the second factor is the standard squared exponential
covariance function for the inputs ‖r‖ ,

∥∥r′∥∥, the first factor
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can be rewritten in the following form

√
θ0 exp

−1− rTr′
‖r‖‖r′‖

θ1

 = c1 exp

c2 φ(r)T︸ ︷︷ ︸
xT

φ(r′︸︷︷︸
x′

)

, (28)

with

c1 =
√
θ0 exp

(
−1
θ1

)
(29)

c2 =
1
θ1

(30)

φ(r) : r →
r
‖r‖

. (31)

Starting from the valid linear covariance function
k(x, x′) = xTx′, and using the techniques for constructing
new valid covariance functions [12, p. 296], it can be shown
that also the second factor is a valid covariance function.

APPENDIX C
IMU MEASUREMENT MODELS
Given the continuous state trajectory x(t) of the tag with
p(t) the position expressed in the inertial frame, q(t) the unit
quaternion describing the rotation R(t) from the inertial frame
to the tag frame, and bacc(t) the bias of the accelerometer,
the measured acceleration of measurement k ∈ Zacc is

zacc, k = R(q(tk ))T (p̈(tk )− g)+ bacc(tk )︸ ︷︷ ︸
hacc(x(tk ))

+ηacc, k , (32)

where R(q(tk )) denotes the rotation matrix corresponding to
the rotation given by the unit quaternion q(tk ), g denotes
the gravitational acceleration expressed in the inertial frame
and ηacc,k is measurement noise sampled from a Gaussian
distribution N (ηacc, k |0, 6acc).

Denoting with bgyr(t) the bias of the gyroscope, with q̃(t)
the vector part and with qw(t) the scalar part of the unit
quaternion q(t), the measured angular rate of measurement
l ∈ Zgyr can be written as [28, eq. (322)]

zgyr, l = 2
(
qw(tl) ˙̃q(tl)− q̇w(tl)q̃(tl)+ q̃(tl)× ˙̃q(tl)

)
+ bgyr(tl)+ ηgyr, l, (33)

where ηgyr(tl) denotes measurement noise from a Gaussian
distribution N (ηgyr, l |0, 6gyr).
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