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Abstract—This paper presents a computationally efficient
method of generating state-to-state trajectories for fully-actuated
multirotor vehicles. The approach consists of computing trans-
lational and rotational motion primitives that guide the vehicle
from any initial state, defined by position, velocity and attitude,
to any end state in a given time, and subsequently verifying
the motion primitives’ feasibility. Computationally light-weight
motion primitives for which closed-form solutions exist are pre-
sented and an efficient method to test their feasibility is derived.
The algorithm is shown to be able to generate trajectories and
verify their feasibility within a few microseconds and can thus be
used as an implicit feedback law or in high level path planners
that involve evaluating a large number of possible trajectories
to achieve some high level goal. The algorithm’s performance
is analyzed by comparing it with time-optimal trajectories. An
experimental demonstration that requires the computation of
trajectories for a large set of end states in real time is used
to evaluate the approach.

Index Terms—Trajectory generation, motion control, aerial
robotics.

I. I NTRODUCTION

M ULTIROTOR vehicles have become very popular aerial
robotic platforms due to their high maneuverability and

ability to hover. However, one of the limitations of traditional
multirotor vehicles is their inherent under-actuation, i.e. their
inability to independently control their thrust and torque in
all three dimensions. In order to increase performance criteria
such as flight duration or payload, all rotors are typically
arranged in a single plane, thereby limiting the thrust to a
single direction and coupling the vehicle’s translational and
rotational dynamics. This limits not only the set of feasible
trajectories, but also the vehicle’s ability to instantaneously
resist arbitrary force and torque disturbances as required when
flying high precision maneuvers or when physically interacting
with the environment. To overcome these limitations, several
novel multirotor vehicle designs with non-planar rotor config-
urations have been developed in the past years such as the
hexrotor vehicles [1]–[5] or the octorotor vehicle [6]. These
multirotor vehicles are capable of independently generating
thrust and torque in any direction and hence allow control of
all of their six degrees-of-freedom independently.

A. Goal and Motivation

A key feature required to exploit the full dynamic capabili-
ties of these novel multirotor vehicles is a trajectory generator
that can compute a large set of position and attitude flight paths
in real time while respecting the system dynamics and input
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constraints. In many of the envisioned application areas such
as aerial manipulation or filming, the environment may con-
stantly change: the target object may move; large disturbances
may throw the vehicle off its originally planned course; or
information about the environment may only become available
in mid-flight. In such dynamic environments, pre-planned
trajectories may become suboptimal or even infeasible, and
thus a method to constantly adapt the trajectory in real time is
required. Furthermore, in many of these scenarios there exist
multiple trajectories that achieve the same high level goal,
and hence, a trajectory generator is needed that is capable of
rapidly evaluating a large set of trajectories and selecting the
best trajectory with respect to some performance measure.

B. Related Work

A number of trajectory generation algorithms for traditional
multirotor vehicles have been presented in recent years. These
algorithms can roughly be divided into three groups: A first
group of algorithms generates trajectories based on path prim-
itives, for example lines [7], polynomials [8], or splines [9],
and subsequently parametrizes the paths in time such that the
dynamic constraints are satisfied. A second group consists of
algorithms that make use of the differential flatness of the
system to approximate the input constraints by constraints on
position derivatives. Trajectories are then generated by solving
an optimal control problem on the translational kinematics
with the objective of, for example, minimizing the maneuver
duration [10] or some position derivatives [11], [12]. A compu-
tationally very inexpensive method of this group is presented
in [13], where the input constraints are neglected when solving
the optimization problem and an efficient method is used sub-
sequently to check whether the resulting trajectories violate the
input constraints. Finally, a third group of algorithms generates
trajectories by solving an optimal control problem on the full
system dynamics numerically, either leveraging Pontryagin’s
minimum principle [14] or using numerical optimal control
[15], [16].

Although the aforementioned algorithms can be used to
generate trajectories for the novel fully-actuated multirotor
vehicles, they do not take full advantage of the dynamic
capabilities of these vehicles as they only generate attitude
trajectories that are directly coupled with the vehicle’s position
trajectory. Some algorithms to generate decoupled position
and attitude trajectories have been developed for spacecraft
applications. For example in [17] and [18], trajectories are gen-
erated using separate position and attitude path primitives that
are then parametrized in time to ensure their feasibility with
respect to the input constraints. However, these algorithms are
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usually not fast enough to apply in real time to multirotor
vehicles whose position and attitude control loops typically
run at rates of50-100Hz [19], [20] and hence demand the
trajectories to be generated in a few milliseconds.

C. Contribution

This paper presents and analyzes a trajectory generation
algorithm for fully-actuated multirotor vehicles capable of
rapidly generating thousands of trajectories which guide the
vehicle from any initial state to any end state in a given time.
The algorithm is similar to the approach presented in [13]
and is based on concatenating computationally light-weight
motion primitives for which closed-form solutions exist. When
generating the motion primitives, the input constraints are
neglected and their feasibility is then validated a posteriori by
relating the motion primitives’ position and attitude trajectories
to the input constraints using the multirotor vehicle’s system
dynamics. In [13], only traditional multirotor vehicles with
planar rotor configurations were considered, i.e. vehicles that
can only produce a thrust in a single direction. For these aerial
vehicles, it is sufficient to only compute translational motion
primitives as this fully defines the vehicle’s state and control
inputs (up to a yaw rotation). However, this is not sufficient
for fully-actuated aerial vehicles and this paper thus presents
a method to generate both translational and rotational motion
primitives and introduces sufficient conditions to verify their
feasibility.

When computing the motion primitives, the vehicle’s ability
to control all of its six degrees of freedom independently is
used and separate motion primitives for the translational and
rotational motion are computed, each by solving an optimal
control problem. For the translational motion primitive, the
objective is to minimize the jerk, and for the rotational motion
primitive, the objective is to minimize the trajectory’s rotation
vector acceleration, an approximation of the angular acceler-
ation. In both cases, the solution trajectories are characterized
by polynomials in time, a key property that is used for the fast
and efficient validation of the trajectories’ feasibility.

Since the algorithm is able to generate trajectories for arbi-
trary initial states, final states and maneuver duration, it can
be applied to a large class of trajectory generation problems.
Furthermore, the algorithm is shown to be computationally
efficient and can generate approximately 500 000 trajectories
per second when implemented on a standard laptop computer.
Due to these two properties, the algorithm is well suited to be
used in high level path planners such as probabilistic roadmap
[21] or rapidly exploring random tree algorithms [22] that
involve evaluating large numbers of candidate trajectories, or
as an implicit feedback law similar to model predictive control
[23].

The algorithm’s performance is assessed through an experi-
mental demonstration that requires doing a search over a large
set of possible end states in real time. The goal is for a fully-
actuated multirotor vehicle to catch a thrown ball in a small
pouch. The trajectory generator is embedded in a high level
path planner that evaluates a set of possible end states such that
the ball is caught in the pouch. Because the ball’s flight path

varies for each throw, the trajectories cannot be pre-planned
and have to be generated in real time.

D. Outline

The remainder of this paper is organized as follows: Section
II introduces preliminaries on two attitude representations that
are used throughout the paper. In Section III, the system
dynamics and the input constraints of the multirotor vehicles
considered in this paper are presented. In Section IV, the
trajectory generation problem is formally stated. In Section
V, motion primitives that guide the vehicle from any initial to
any final state are introduced, and a method to determine their
feasibility is presented in Section VI. Section VII presents
a trajectory generation algorithm that fulfills the trajectory
generation problem. The algorithm’s performance compared
to the multirotor vehicle’s physical limits as well as results
on the computational costs are presented in Section VIII. An
experimental evaluation of the trajectory generation algorithm
is presented in Section IX, and the paper is concluded in
Section X.

II. PRELIMINARIES

In this section, two attitude representations that will be
used throughout the paper are introduced: the rotation vector
r ∈ R3 and the rotation matrixR ∈ SO(3), where SO(3)
denotes the Special Orthogonal Group, defined as

SO(3) = {R ∈ R3×3|RTR =RRT = I

anddet(R) = 1},
(1)

whereI ∈ R3×3 is the identity matrix. The rotation matrix
representation is convenient for rotating vectors or expressing
the attitude kinematics. However, the constraints (1) on the
group of rotation matrices renders it difficult to use them
for attitude trajectory generation. Rotation vectors on the
contrary are an unconstrained three-parameter representation,
but rotating vectors or computing the attitude kinematics is
more complicated. For these reasons, the attitude trajectories in
this paper will be planned using rotation vectors, and rotation
matrices will be used to represent attitudes in all other cases. In
the following, the conversion between the two representations
and their relation to angular velocity is presented.

Any arbitrary rotation can be described by a rotation axis
and a rotation angle about this axis (see for example [24], and
references therein). Letn ∈ S2 be a unit vector which rep-
resents the axis of rotation, whereS2 = {y ∈ R3 | yTy = 1},
and let ϕ ∈ R be the rotation angle. The rotation vectorr
describing this rotation is defined to be

r = ϕn. (2)

Note that the rotation vector representation is not unique. In
fact, any rotation vectorr = ϕn + 2kπn, with k any integer,
represents the same physical attitude. The rotation matrixR
corresponding to the physical attitude represented byr is given
by [24]

R = e[r], (3)

= I +
sin ‖r‖
‖r‖

[r] +
1 − cos ‖r‖

‖r‖2
[r]2, (4)
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where‖ ∙ ‖ denotes the Euclidean norm
√

rT r and [r] is the
skew-symmetric cross-product matrix representation ofr,

[r] =




0 −r3 r2

r3 0 −r1

−r2 r1 0



 . (5)

Conversely, given a rotation matrixR, the rotation vector is
obtained by

[r] = log R, (6)

=
ϕ

2 sin ϕ

(
R − RT

)
, (7)

whereϕ satisfies1 + 2 cos ϕ = trace(R) andϕ ∈ [0, π].
Let R(t) be a curve in SO(3) describing the attitude of a

rigid body relative to a fixed coordinate frame. The relation
between the angular velocity in body-fixed coordinatesω and
the rotation matrix and its temporal derivative is given by

[ω] = RTṘ. (8)

An analogous relation can be obtained when the attitude of a
body is described by a rotation vectorr(t). Differentiating (4)
with respect to time and inserting it into (8) yields [24]

ω = W (r)ṙ, (9)

whereW (r) = I if ‖r‖ = 0, and otherwise

W (r) = I −
1 − cos ‖r‖

‖r‖2
[r] +

‖r‖ − sin ‖r‖
‖r‖3

[r]2. (10)

III. D YNAMIC MODEL

In this section, the multirotor vehicle dynamics and its input
constraints are presented. Only fully-actuated multirotor vehi-
cles are considered, i.e. multirotor vehicles that can generate
thrust and torque in all three dimensions independently of
each other. For ease of notation, vectors may be expressed as
n-tuplesx = (x1, x2, . . . , xn) with dimensions and stacking
clear from context.

A. Equations of Motion

The multirotor vehicle is modelled as a rigid body. The
translational degrees-of-freedom are described by the position
of the multirotor vehicle’s center of massx = (x1, x2, x3),
expressed in an inertial frame, and its rotational degrees-
of-freedom are parametrized using the rotation matrix
R ∈ SO(3).

The multirotor vehicle’s control inputs are considered to
be the mass-normalized collective thrustf = (f1, f2, f3) and
the angular velocityω = (ω1, ω2, ω3), both expressed in the
vehicle’s body-fixed coordinate frame as depicted in Fig. 1.
The thrust dynamics of multirotor vehicles are typically much
faster than their rigid body dynamics, and hence it is assumed
that the commanded thrust can be achieved instantaneously.
Likewise, it is assumed that the commanded angular veloc-
ity can be changed instantaneously. Because of multirotor
vehicles’ low rotational inertia and their ability to produce
large torques due to the off-center mounting of their rotors,
it is assumed that a high-bandwidth on-board controller can
track the angular velocity commands sufficiently fast using

x1 x2

x3

f

ω

g

Fig. 1: Illustration of a fully-actuated multirotor vehicle with its position
described byx = (x1, x2, x3) in the inertial frame. The vehicle’s control
inputs are the mass-normalized collective thrustf and the angular velocity
ω. In addition, gravityg is acting upon the vehicle.

gyroscope feedback. The vehicle’s attitude dynamics are thus
neglected and the equations of motion can be written as

ẍ = Rf − g, (11)

Ṙ = R[ω], (12)

whereg is the acceleration due to gravity, expressed in the
inertial frame.

Note that more detailed models for the dynamics of multi-
rotor vehicles exist that incorporate, for example, aerodynamic
effects such as drag [25]. However, the preceding model
captures the most relevant dynamics and greatly simplifies the
trajectory generation problem, which then again allows com-
pensation for model inaccuracies by continuously re-planning
the trajectories. It should further be noted that by taking the
control inputs as the collective thrust and angular velocity,
the vehicle’s rotor configuration, i.e. the number of rotors,
their positions and orientations, is hidden from the equations
of motion by the on-board angular velocity controller that
computes the individual rotor thrusts based on the angular
velocity error and the commanded collective thrust. As a result,
the differential equations (11) and (12) describing the system
dynamics hold true for any fully-actuated multirotor vehicle,
such as the vehicles presented in [1]–[6].

B. Input Constraints

It is assumed that the control inputs are subject to satu-
rations. The attainable collective thrust is constrained to the
polyhedron

Aff � bf , (13)

where the symbol� denotes componentwise inequality. The
faces of the polyhedron described by (13) encode the thrust
limits in different directions that are due to the orientation
and saturation limits of the individual rotors. Examples of
attainable thrust volumes for fully-actuated multirotor vehicles
can be found in [4] and [5].

The angular velocity is assumed to be limited to the
polyhedron

Aωω � bω, (14)
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where the limits can be due to, for example, the measurement
range of the gyroscope used for feedback or the range for
which the angular velocity controller responds sufficiently fast
to angular velocity commands such that the simplified system
dynamics (11) and (12) describe the system behaviour well.
An example of angular velocity constraints for the multirotor
vehicle [6] is given in Appendix A.

Without loss of generality, it is assumed in the following
that all rows ofAf andAω are unit vectors.

IV. PROBLEM STATEMENT

The trajectory generation problem addressed in this paper
can be formulated as follows: given an initial state at time
t = 0, consisting of position, velocity and attitude, find control
inputs f(t) and ω(t), t ∈ [0, T ], that steer the multirotor
vehicle to a desired final state at timet = T , while satisfying
the system dynamics (11) and (12) and input constraints (13)
and (14). Furthermore, the generation of trajectories should
be computationally inexpensive such that a large number of
trajectories can be computed in real time.

The approach presented in the following consists of two
steps: In a first step, motion primitives guiding the vehicle
from any initial to any desired end state in a given time
are planned while the input constraints are ignored. In a
second step, the control inputs are recovered from the motion
primitives’ position and attitude trajectory using the system
dynamics and then verified for input feasibility. If feasibility
cannot be established, the two steps are recursively performed
on subintervals and the resulting motion primitives are con-
catenated.

V. M OTION PRIMITIVE GENERATION

In this section, motion primitives that guide the multirotor
vehicle from any initial state to any desired end state in a
given time are presented. As in [13] for traditional multirotor
vehicles, the motion primitives are characterized by polynomi-
als in time. However, since fully-actuated multirotor vehicles
can independently control their position and attitude, it is not
sufficient to only compute a translational motion primitive
as for traditional multirotor vehicles, but a rotational motion
primitive also needs to be computed.

In the following, separate motion primitives for the vehicle’s
position and attitude are planned in the position coordinates
x and attitude coordinatesr, respectively. It can be seen from
the system dynamics (11) and (12) that in order to be able
to recover the motion primitives’ corresponding control inputs
f(t) and ω(t), the position trajectoryx(t) needs to be at
least twice differentiable with respect to time, and the attitude
trajectory r(t), or equivalentlyR(t), at least once. Without
loss of generality due to time invariance, the motion primitives
are planned on the interval[0, T ].

A. Translational Motion Primitive

The goal of the translational motion primitive is to guide the
vehicle from any initial position and velocity to any desired
end position and velocity in timeT . We seek to find the motion

primitive that minimizes the average jerk squared on the time
interval [0, T ], i.e.

Jtrans =
1
T

∫ T

0

‖
...
x(t)‖2dt. (15)

This cost function is chosen because it is computationally
convenient, a closed-form solution exists, and it works well
in practice. Furthermore, it yields a position trajectory that is
three times differentiable with respect to time. Consequently,
the corresponding control inputf can be made continuous
even when concatenating multiple motion primitives and is
therefore easy to track.

The optimal jerk
...
x(t) minimizing (15) can be computed

using Pontryagin’s minimum principle (see for example [26])
and is derived in Appendix B. Its corresponding position,
velocity and acceleration trajectories can be shown to be of
the form

x(t) = c1
120 t5 + c2

24 t4 + c3
6 t3 + c4

2 t2 + c5t + c6, (16)

ẋ(t) = c1
24 t4 + c2

6 t3 + c3
2 t2 + c4t + c5, (17)

ẍ(t) = c1
6 t3 + c2

2 t2 + c3t + c4. (18)

The constraints on the initial and final position and velocity
of the motion primitive only partially define the trajectories
(16)-(18). The motion primitive’s initial and final acceleration
can either be left free and subject to optimization, or they can
be used to ensure smooth transitions on the control inputf
when concatenating multiple motion primitives by setting the
initial acceleration to be equal to the final acceleration of the
preceding motion primitive, and likewise for the final accel-
eration. If not mentioned otherwise, it will be assumed in the
remainder of this paper that also the initial and final acceler-
ation are defined, such that(x(0), ẋ(0), ẍ(0)) = (p0, v0, a0)
and (x(T ), ẋ(T ), ẍ(T )) = (pT , vT , aT ). The components of
the coefficientsc1, . . . , c6 along thei-th axis are then given
by



c1,i

c2,i

c3,i



 =
1

T 5




720 −360T 60T 2

−360T 168T 2 −24T 3

60T 2 −24T 3 3T 4








Δpi

Δvi

Δai



 , (19)

and



c4,i

c5,i

c6,i



 =




a0,i

v0,i

p0,i



 , (20)

where, for example,c1,i is the component ofc1 along thei-th
axis and




Δpi

Δvi

Δai



 =




pT,i − p0,i − v0,iT − 1

2a0,iT
2

vT,i − v0,i − a0,iT
aT,i − a0,i



 . (21)

The cost of the motion primitive can then be computed to be

Jtrans =
1
20

cT
1 c1T

4 +
1
4
cT
1 c2T

3 +
1
3

(
cT
1 c3 + cT

2 c2

)
T 2

+ cT
2 c3T + cT

3 c3.
(22)
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B. Rotational Motion Primitive

The goal of the rotational motion primitive is to guide the
vehicle from any initial attitude to any desired end attitude in
time T . We seek to find the motion primitive that minimizes
the average rotation vector acceleration squared on the time
interval [0, T ], i.e.

Jrot =
1
T

∫ T

0

‖r̈(t)‖2dt. (23)

Similar to the translational motion primitive, this cost function
is chosen because it is computationally convenient, has a
closed-form solution, works well in practice, and yields an
attitude trajectory that is twice differentiable with respect to
time. Consequently, the corresponding control inputω can
be made continuous and is thus easy to track even when
concatenating multiple motion primitives, which is exploited
in Section VII. In [27], it is shown that the rotation vector
acceleration̈r approaches the angular accelerationω̇ if either

• the rotation is small, i.e.‖r(t)‖ → 0,
• the rotation is slow, i.e.‖ṙ(t)‖ → 0,
• or the rotation axis does not vary considerably, i.e.
∠(r, ṙ) → 0 and∠(r, r̈) → 0.

Minimizing the cost (23) can therefore be interpreted as an
approximation of minimizing the average angular acceleration
squared,

J =
1
T

∫ T

0

‖ω̇(t)‖2dt, (24)

however, in general, the latter does not admit a closed-form
solution and is hence not well-suited to generate a large set
of trajectories in real time.

Let R0 andRT be the initial and final attitude, respectively.
In order to be able to compute the maximum rotation angle
in closed-form (see Section VI-A) and for the solution to
approximate the minimum angular acceleration trajectory well,
the motion primitive is always planned from an initial attitude
of r(0) = 0 to a final attitude ofr(T ) = re such that‖r(t)‖
remains small, wherere is the rotation betweenR0 andRT ,

[re] = log(RT
0 RT ), (25)

and the resulting motion primitive is then rotated byR0 to
satisfy the original attitude conditions1.

As with the translational motion primitive, the optimal rota-
tion vector acceleration̈r(t) minimizing (23) can be computed
using Pontryagin’s minimum principle (see Appendix B for a
derivation) and yields attitude and angular velocity trajectories
of the form

R(t) = R0e
[r(t)], (26)

ω(t) = W (r(t))ṙ(t), (27)

1Note that (25) computes the rotation vectorre such that‖re‖ ≤ π,
i.e. such that the rotation angle is smaller thanπ. By adding2kπre/‖re‖ to
(25), withk being any integer, the motion primitive ends at the same physical
attitude but performs an additionalk full rotations. Throughout this paper,k
is always chosen to be zero.

with

r(t) = d1
6 t3 + d2

2 t2 + d3t, (28)

ṙ(t) = d1
2 t2 + d2t + d3. (29)

Analogous to the translational motion primitive, the con-
straints on the initial and final attitude of the motion primitive
only partially define the attitude and angular velocity trajectory
(26)-(29). The initial and final angular velocity can either
be left free and subject to optimization, or they can be
used to ensure smooth transitions of the control inputω
when concatenating motion primitives by setting the initial
angular velocity to be equal to the final angular velocity
of the preceding motion primitive, and analogously for the
final angular velocity. If not mentioned otherwise, it will be
assumed in the remainder of this paper that the initial and final
angular velocityω0 andωT are also defined. The components
of the coefficientsd1, d2 andd3 along thei-th axis are then
given by

[
d1,i

d2,i

]

=
1

T 3

[
−12 6T
6T −2T 2

] [
re,i − ω0,iT
ω̃T,i − ω0,i

]

, (30)

and

d3,i = ω0,i, (31)

whereω̃T is defined to be

ω̃T := W−1(re)ωT . (32)

The cost of the motion primitive can then be shown to be

Jrot =
1
3
dT

1 d1T
2 + dT

1 d2T + dT
2 d2. (33)

C. Discussion

Generating the motion primitives can be done very effi-
ciently. In the case of the translational motion primitive, it
only requires the evaluation of (19) and (20) for each axis.
In the case of the rotational motion primitive, it requires the
evaluation of (25) and (32), and subsequently (30) and (31)
for each axis. In addition, calculating the costs of the motion
primitives is also computationally inexpensive and can be
done in closed-form using (22) and (33). If multiple motion
primitives achieve the same high level goal, these costs could
be used to compare the aggressiveness of the different motion
primitives.

VI. V ERIFICATION OF FEASIBILITY

In this section a method to efficiently verify the motion
primitives’ feasibility is introduced. In [13], the feasibility
of the motion primitives was determined by finding extreme
points of the motion primitive’s position trajectory (and its
time derivatives) and relating them to the control input con-
straints using the differential flatness of traditional multirotor
vehicles. Due to the different system dynamics of fully-
actuated multirotor vehicles and the decoupled planning of
the translational and rotational motion primitive, the feasibility
checks of [13] cannot be applied to the motion primitives of
Section V and a different method to verify their feasibility is
devised.
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Although the motion primitives for the position and attitude
are planned independently of each other, their feasibility can-
not be verified separately as the position and attitude dynamics
are coupled by the thrust input. The translational coordinates
are expressed in an inertial frame, but the thrust input and its
constraints are expressed in the vehicle’s body frame and hence
depend on the vehicle’s attitude. In the following, verifying the
motion primitives’ feasibility is done by first computing the
maximum rotation angle of the rotational motion primitive,
and then verifying whether the control inputs satisfy their
constraints under any rotation with a rotation angle equal or
smaller than the maximum rotation angle.

A. Maximum Rotation Angle

It can be seen from the multirotor vehicle’s attitude given in
(26) that the maximum rotation angle relative to the vehicle’s
initial attitudeR0 is given by

ϕmax = max
0≤t≤T

‖r(t)‖, (34)

and can be solved by finding the roots of

d

dt

(
rT (t)r(t)

)
= 0. (35)

By design of the rotational motion primitive,r(t) always has
one root att = 0 and consequently (35) also has one root at
t = 0. Therefore, finding the other roots of (35) is equivalent
to finding the roots of a quartic polynomial, for which closed-
form solutions exist [28].

B. Thrust Input Feasibility

The thrust needed during the execution of the motion
primitives can be obtained through the translational dynamics
and is given by

f(t) = e[−r(t)]RT
0 (ẍ(t) + g) . (36)

The motion primitives’ feasibility with respect to the thrust
constraint, i.e.

Aff(t) � bf , ∀t ∈ [0, T ], (37)

is determined by first examining if the initial thrust is feasible,

AfRT
0 (c4 + g) � bf , (38)

and afterwards verifying that the thrust remains feasible during
the entire motion primitive. This is done by computing a
bounding box on the required mass-normalized thrust, ex-
pressed in the vehicle’s initial body frameR0, and ensuring
that all points in the bounding box satisfy the thrust constraints
under any rotation with a maximum rotation angle ofϕmax.

Let H be the bounding box on the mass-normalized thrust
rotated into the vehicle’s initial body frame, i.e.

H = {y ∈ R3|hmin � R0y � hmax}, (39)

where the lower and upper boundshmin andhmax are computed
such that

hmin � ẍ(t) + g � hmax, ∀t ∈ [0, T ]. (40)

The lower and upper bounds are expressed in the inertial frame
for computational efficiency reasons (see Section VII) and are
obtained by evaluating̈x(t) at the boundaries of the interval
[0, T ] and by solving for the extrema of the accelerationẍ(t)
along each axis on the interval[0, T ], which is essentially a
matter of finding the roots of its derivative (a polynomial of
order at most two).

The constraint (37) can then be formulated as

Afe[−r(t)]h � bf , ∀h ∈ H, ∀t ∈ [0, T ]. (41)

In Appendix C, it is shown that any pointy ∈ R3 remains in
a closed ballB with centerδfy and minimal radiusρf‖y‖
under any rotation with a maximum rotation angle ofϕmax,
i.e.

e[−r(t)]y ∈ B (δfy, ρf‖y‖) , ∀t ∈ [0, T ], (42)

where

δf = cos(ϕ̃),

ρf = sin(ϕ̃),

ϕ̃ = min
[
ϕmax,

π

2

]
.

(43)

Therefore, using (42), a sufficient condition for thrust feasi-
bility is

Af (δfh + ρf‖h‖Δ) � bf , ∀h ∈ H,

∀Δ ∈ B(0, 1),
(44)

or equivalently (as all row vectors ofAf are unit vectors)

Afδfh � bf − ρf‖h‖1, ∀h ∈ H, (45)

where1 = (1, . . . , 1).
Since the bounding boxH is a convex set, every point in

H can be written as a convex combination of the vertices
of H. Furthermore, it is straightforward to verify that also
(45) describes a convex set and hence, for any two points
{h1, h2} ∈ H that satisfy (45), any convex combination

h = λh1 + (1 − λ)h2, λ ∈ [0, 1] (46)

also satisfies (45). It is therefore sufficient to only validate that
the eight vertices of the bounding boxH satisfy (45) in order
to guarantee feasibility with respect to the thrust input.

A visual interpretation of the thrust input feasibility check
is illustrated in Fig. 2.

C. Angular Velocity Input Feasibility

The angular velocity during the execution of the rotational
motion primitive is given in (27) and has to satisfy the
constraint

Aωω(t) � bω, ∀t ∈ [0, T ]. (47)

First, it is determined whether the initial angular velocity is
feasible, i.e.

Aωd3 � bω, (48)

and then it is verified that the angular velocity remains feasible
during the entire motion primitive by computing a bounding
box on the required rotation vector velocity and ensuring
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δfh
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Fig. 2: Visual interpretation of the thrust input feasibility check. Fig. 2(a) depicts the mass-normalized thrust trajectoryẍ(t) + g during the time interval
t ∈ [0, T ]. If the initial thrust att = 0 is found to be feasible, then a bounding boxH on the required thrust is computed (see Fig. 2(b)). Because the thrust
constraint (13) is expressed in the vehicle’s body frame but the bounding boxH is computed with respect to the vehicle’s initial body frame, i.e. the attitude
at t = 0, it needs to be verified that every pointh ∈ H satisfies the thrust constraint when rotated into the vehicle’s body frame for anyt ∈ [0, T ]. If ϕmax
denotes the maximum rotation angle of the rotational motion primitive during the interval[0, T ] relative to the vehicle’s initial attitude, then it can be shown
that any pointy ∈ R3 remains in a closed ball with centerδfy and minimal radiusρf‖y‖ under any rotation with a maximum rotation angle ofϕmax. Since
the bounding boxH is convex, it is sufficient to verify that the bounding balls of the eight vertices ofH lie in the set of attainable thrusts (see Fig. 2(c)).

that all points in the bounding box satisfy the constraints
when mapped to angular velocities under any rotation with
a maximum rotation angle ofϕmax.

Let V describe the bounding box of the rotation vector
velocity,

V = {y ∈ R3 | vmin � y �vmax}, (49)

where the lower and upper boundvmin andvmax are computed
by finding the minimum and maximum of the rotation vector
velocity ṙ(t) along each axis on the interval[0, T ]. This
involves evaluatingṙ(t) at the boundaries of the interval and
at the root of its derivative (a linear polynomial).

The constraint (47) can then be rewritten as

AωW (r(t)) v � bω, ∀v ∈ V , ∀t ∈ [0, T ]. (50)

Similar to (42), it is shown in the Appendix C that any point
y ∈ R3 remains in a ball with centerδωy and minimal radius
ρω‖y‖ under the mapW (r(t)) y for any rotation with a
maximum rotation angle ofϕmax, i.e.

W (r(t)) y ∈ B(δωy, ρω‖y‖), ∀t ∈ [0, T ], (51)

where

δω =

{
1, if ϕmax = 0,
sin(ϕ̃)

ϕ̃ , otherwise,

ρω =

{
0, if ϕmax = 0,
1−cos(ϕ̃)

ϕ̃ , otherwise,

ϕ̃ = min[ϕmax, ϕ],

(52)

whereϕ is defined as the rotation angle at which the ball’s
radius is maximized,

ϕ := arg max
ϕ>0

1 − cos(ϕ)
ϕ

. (53)

It therefore follows from (51) that a sufficient condition to
establish feasibility is

Aω (δωv + ρω‖v‖Δ) � bω, ∀v ∈ V ,

∀Δ ∈ B(0, 1),
(54)

or equivalently

Aωδωv � bω − ρω‖v‖1, ∀v ∈ V . (55)

As for the verification of the thrust feasibility, it is sufficient
to only verify that all vertices of the bounding boxV satisfy
(55) in order to determine feasibility with respect to the
angular velocity input since bothV and (55) are convex sets.

D. Discussion

The motion primitives’ feasibility can be tested at little
computational cost as it only involves verifying the feasibility
of a few distinct points, namely the vertices of the bounding
boxesH andV . Computing these vertices as well as computing
the maximum rotation angle only requires finding the roots of
a polynomial of order at most four and can therefore be done
in closed-form.

Furthermore, using the same methods as shown above,
the feasibility checks can easily be extended to handle state
constraints or further input constraints of the form

Ass(t) � bs (56)

or

AsR(t)s(t) � bs, (57)

where s(t) can be any state or control input trajectory (or
linear combinations thereof), as computing a bounding box
on these only involves finding the roots of at most a quartic
polynomial. The constraints (56) and (57) can be used, for
example, to encode boundaries on the vehicle’s position or
maximum angular velocity expressed in the inertial frame.

Due to the conservative approximations taken in the input
feasibility tests (45) and (55) by computing, for example,
bounding boxes, the input feasibility tests are sufficient but
not necessary. In particular, applying the input feasibility tests
can result in three possible outcomes. The motion primitives
can either be

• provably infeasible, if either (38) or (48) is false,
• provably feasible, if (45) and (55) hold true for all vertices

of the corresponding bounding box,
• or otherwise, their feasibility is indeterminable.
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VII. T RAJECTORYGENERATION ALGORITHM

This section describes the trajectory generation algorithm
consisting of the previously derived motion primitives and
feasibility checks. First, a translational and rotational motion
primitive on the intervalT = [τ1, τ2] = [0, T ] are planned
from a given initial state to a given final state. Afterwards,
the feasibility of the motion primitives, or more precisely of
the corresponding control input trajectoriesf(t) andω(t), is
tested. If the feasibility tests return that the motion primitives
are either feasible or infeasible, the algorithm terminates
accordingly. If the feasibility could not be determined, the
time interval is split in half,

τ 1
2

=
τ1 + τ2

2
, (58)

T1 = [τ1, τ 1
2
], T2 = [τ 1

2
, τ2]. (59)

If the new interval lengthτ 1
2
− τ1 is below some threshold

τmin, the algorithm terminates without being able to gener-
ate a feasible trajectory. Otherwise, the algorithm is applied
recursively on the subintervalT1 to generate a trajectory
from the initial states(τ1) to the final states(τ 1

2
), where

s(t) = (x(t), ẋ(t), R(t)) denotes the state trajectory corre-
sponding to the motion primitives computed on the interval
T . If the outcome is feasible, then the algorithm is also
applied recursively on the second subintervalT2 to generate
a trajectory from the initial states(τ 1

2
) to the final state

s(τ2). If the outcome on the intervalT2 is also feasible, the
motion primitives of the two intervals are concatenated and
the algorithm terminates with a proven feasible trajectory. In
addition to the initial state of the trajectory onT2 being equal
to the final state of the trajectory onT1, also the initial and
final acceleration and angular velocities onT2 andT1 are set to
be equal, in particular töx(τ 1

2
) andω(τ 1

2
), in order to ensure

smooth transitions on the control inputs when concatenating
the motion primitives. The initial and final acceleration and
angular velocity on the intervalT are chosen likewise and
are, for example, set to zero for rest-to-rest maneuvers.

Bisecting the time interval on which the trajectories are
generated is motivated by the conservative approximation of
the feasibility constraints. If the trajectory is planned on a
shorter time interval, the corresponding maximum rotation
angle will be smaller and the bounding boxes will be tighter,
hence reducing the conservativeness of the feasibility checks.

Note that due to the principle of optimality (see for example
[26]), the translational motion primitive only needs to be
computed once, as the optimal position trajectoryx(t), t ∈ T ,
is also optimal on the subintervalst ∈ T1 and t ∈ T2, re-
spectively. When verifying the motion primitives’ feasibility,
the fact that the rotational motion primitive is planned from
r(0) = 0 is exploited in order to efficiently compute the
maximum rotation angle. However, this requires the nonlinear
transformations of the boundary conditions (25) and (32)
and as a consequence, the principle of optimality cannot
be applied to the rotational motion primitives. The optimal
attitude trajectory computed on a subinterval[τ1, τ2] ⊂ T
generally differs from the corresponding attitude trajectory
computed on the entire intervalT , in particular ifτ1 6= 0, and
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Fig. 3: Attitude and angular velocity trajectories obtained by applying the
proposed trajectory generation algorithm recursively on the interval[0, T ].
The solid line represents the trajectories computed on the intervals[0, T ] and
[0, T/2], respectively. The dashed line represents the trajectories computed on
the interval[T/2, T ]. For ease of interpretation, the rotation vector trajectory
on the interval[T/2, T ] is rotated by the attitude att = T/2. It can be
seen that the trajectories computed on the interval[T/2, T ] differ from the
corresponding trajectories computed on the entire time interval, despite having
the same initial and final attitude and angular velocity.

therefore needs to be recomputed (see Fig. 3). As a result of
the changing attitude trajectories due to bisection, a trajectory
that is feasible but whose feasibility cannot be determined may
be rendered infeasible in a subsequent recursion step.

VIII. P ERFORMANCEEVALUATION

This section attempts to assess the performance of the
proposed trajectory generation algorithm with respect to the
design objective of rapidly computing a large set of feasible
state-to-state trajectories for a given maneuver duration in real
time. If the trajectory generation algorithm finds a trajectory,
it is guaranteed to satisfy the system dynamics and input
constraints. However, if the algorithm is unable to find a
feasible trajectory, it does not imply that no feasible trajectory
exists, but could be due to

• the restriction of the trajectories to the motion primitives
of Section V (and concatenations thereof),

• or to the conservative approximations of the input con-
straints when verifying the feasibility, as the derived
feasibility conditions are only sufficient but not necessary
and therefore may require to perform a bisection step that
will render the trajectories infeasible.

In order to evaluate the conservativeness of the algorithm and
its applicability to real-time applications, its computational
costs when implemented on a standard laptop computer are
presented and a comparison with time-optimal trajectories is
given. The evaluations are carried out for a minimum time
interval length ofτmin = 0.01s and for the omni-directional
octorotor vehicle presented in [6], whose thrust is constrained
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Fig. 4: Comparison of the time-optimal maneuver duration relative to the
shortest maneuver duration for which the presented algorithm is able to find
a feasible trajectory. The comparison is carried out for 10 000 trajectories
starting from rest and steering the vehicle to randomized end states.

to a rhombic dodecahedron with an inradius of19.6m/s2

and whose angular velocity components are constrained to
|ωi| ≤ 3rad/s, i ∈ {1, 2, 3} (see Appendix A for more de-
tails).

A. Computational Performance

In the following, the average computation time required to
run the algorithm on a standard laptop computer with an Intel
Core i7-3840QM CPU running at2.8GHz, with 16GB of
RAM, is given. The algorithm was compiled with Microsoft
Visual C++ 14.0 and was run as a single thread application.
The average computation time was evaluated through gener-
ating one billion trajectories starting from rest at the origin
to randomized final states with maneuver durations drawn
uniformly at random between0.25 s and10.0 s. The vehicle’s
initial attitude was chosen such that its body frame is aligned
with the inertial frame. The final positions and velocities
were chosen uniformly at random from a box centered at the
origin with side lengths of10m and 10m/s, respectively,
and the final attitudes where chosen uniformly at random
from SO(3). Since the maneuvers were planned from rest, the
initial acceleration and angular velocity were set to zero. The
components of the final acceleration and angular velocity were
chosen uniformly at random between−5m/s2 and 5m/s2,
and−1.5 rad/s and1.5 rad/s, respectively.

The average computation time per trajectory, including
verifying its input feasibility, was measured to be1.94 μs. Of
all computed trajectories, 86.3% were proven to be feasible,
10.9% were found to be infeasible, and the feasibility of
the remaining 2.8% could not be determined. Although the
algorithm was implemented on a laptop computer, modern
flight computers such as the Qualcomm Snapdragon Flight2

have similar specifications and the algorithm could therefore
also be run on board at a comparable rate.

The low computational cost of the proposed trajectory
generation algorithm can be exploited to rapidly search over a
large set of end states and maneuver durations that achieve
a certain high level goal, and to select the trajectory that
minimizes some high level cost.

2https://developer.qualcomm.com/hardware/snapdragon-flight
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Fig. 5: The grey area represents the set of horizontal displacements along the
x1-axis and end times for which feasible trajectories exist. This set was found
by computing the time-optimal maneuver numerically (solid line) and hence a
trajectory longer than this always exists by simply waiting after executing the
time-optimal maneuver, but by definition no shorter trajectory exists (white
area). The dashed line indicates the shortest maneuver durations for which
the algorithm was able to generate a feasible trajectory.

B. Comparison with Time-Optimal Trajectories

Consider the motion primitives of Section V that guide the
vehicle from an initial state to a desired end state in timeT . As
the maneuver duration is increased,T → ∞, it can be derived
from (19) and (30) that the motion primitives’ coefficientsc1,
c2, c3, d1 and d2 converge to zero. The vehicle’s required
control inputsf(t) andω(t) therefore converge to

lim
T→∞

f(t) = e[−ω0t]RT
0 (a0 + g) , (60)

lim
T→∞

ω(t) = ω0. (61)

The initial accelerationa0 and angular velocityω0 are design
parameters that can be chosen arbitrarily. The algorithm is
therefore guaranteed to find a feasible trajectory for sufficiently
long maneuver durations if the multirotor vehicle can generate
sufficient thrust in any direction to overcome gravityg, as for
example the multirotor vehicles [5], [6]. In order to quantify
the algorithm’s conservatism, the minimum maneuver duration
for which the algorithm can find a feasible trajectory is
compared with the duration of the time-optimal maneuver.

The time-optimal trajectories are computed using GPOPS-
II [29], a numerical optimal control software, and the fastest
trajectory found by the proposed algorithm is used as initial
guess for the time-optimal maneuver. Fig. 4 shows the result
of a comparison for 10 000 maneuvers starting from rest at
the origin and with the vehicle’s body frame aligned with the
inertial frame to final states drawn uniformly at random from
the set described in Section VIII-A. On average, the time-
optimal maneuver duration is 33.8% faster than the shortest
maneuver for which the presented algorithm is able to find a
feasible trajectory3.

A comparison of the maneuver durations for pure rest-to-
rest horizontal translations along thex1-axis with the initial
and final body frame aligned with the inertial frame is given in

3A bisection method was used to determine the shortest maneuver duration
for which the presented trajectory generation algorithm is able to find a
feasible trajectory. Computing the shortest maneuver duration using bisection
took on average less than one millisecond (bisection was terminated when
the bisection interval size was smaller than one millisecond), while GPOPS-
II took between several minutes and an hour to compute a solution.
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Fig. 5. The time-optimal maneuvers are on the order of 20%
faster than the fastest feasible trajectories generated by the
proposed algorithm. This is due to limiting the trajectories to
the motion primitives of Section V, but also to the decoupled
planning of the motion primitives. An analysis of the time-
optimal maneuvers revealed that it is beneficial for the vehicle
to rotate in order to accelerate faster and hence reach the target
position quicker, even though the initial and final attitude are
identical.

IX. EXPERIMENTAL RESULTS

This section presents an experiment to verify the feasibility
of the trajectory generation algorithm for real-time applica-
tions that require the evaluation of a large set of possible
trajectories. The goal is for a fully-actuated multirotor vehicle
to catch a ball thrown by a person in a small pouch. This task
was chosen because a large number of trajectories exist that
achieve the goal and need to be evaluated in real time, and is
therefore well suited to test the algorithm’s speed and assess
its performance experimentally.

The experiments were carried out in the Flying Machine
Arena [20], an indoor aerial vehicle test bed at ETH Zurich,
using the omni-directional octorotor vehicle [6]. An overhead
motion-capture system provides position and attitude informa-
tion of the vehicle and the ball. This information is processed
on a desktop computer that estimates the state of the vehicle
and the ball, plans a catching maneuver accordingly and sends
out control commands to the vehicle through a low-latency
radio link at a rate of50Hz. In order to be able to catch the
ball, the octorotor vehicle is equipped with a pouch of radius
5.75 cm at a distance of47.5 cm from the vehicle’s center
of mass (see Fig. 6). A table tennis ball, modelled as a point
mass with aerodynamic drag proportional to its speed squared,
is used in the experiments. All results shown in the following
are from actual flight experiments.

Fig. 6: Omni-directional octorotor vehicle equipped with a pouch. The pouch
is used to catch a thrown ball and thereby demonstrating the algorithm’s
performance experimentally.
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Fig. 7: Three candidate catching maneuvers that guide the octorotor vehicle
from rest to a state in which the ball is caught in the pouch. The dashed line
represents the predicted ball flight path, and the goal is to catch the ball at a
height of zero meters. The maneuver shown in the top plot was found to be
the feasible maneuver with the lowest cost, and the maneuver on the bottom
was found to be infeasible.

A. High Level Path Planner

The trajectory generation algorithm is embedded in a high
level path planner that performs a brute-force search over a
set of possible catching and stopping maneuvers and selects
the maneuvers with the lowest cost.

1) Catching Maneuver:As soon as the ball is thrown into
the air, its catching position and flight duration is predicted
and a catching maneuver is planned using the current vehicle
state as initial condition and with free initial acceleration and
angular velocity (see Appendix B). The catching position is
defined to be the position where the ball crosses a fixed height.
The vehicle’s state at the end of the catching maneuver is
chosen such that the pouch is at the catching position and
that its normal direction points in the opposite direction of the
ball’s velocity. In addition, the ball is caught with the pouch at
rest except for an angular velocity about its normal direction
in order to be less prone to timing errors. A brute-force search
over 1600 end states is performed, in particular over

• 40 final positions, equally spaced around the ball’s catch-
ing position,

• and 40 final angular velocities, equally spaced between
±3 rad/s and with the vehicle’s velocity and acceleration
set accordingly such that the pouch remains at rest.

Fig. 7 shows three of the possible 1600 catching maneuvers
that are evaluated for an initial prediction of the ball’s flight
path.



11

Time (s)

A
ng

ul
ar

ve
lo

ci
ty

(r
a
d
/
s)

T
hr

us
t(

m
/
s2
)

Positionx1
(m)

Positionx
2 (m

)

P
os

iti
on

x
3

(m
)

0 0.5 1 1.368 1.5 2 2.5 2.868−1

0

1

2

3

− 3π
4

−π
2

−π
4

0

−5

0

5

10

−1

0

0

1

2

f1 f2 f3

ω1 ω2 ω3

Fig. 8: The left hand side shows a complete catching and stopping maneuver. The dashed line denotes the ball’s flight path. After the ball is first detected, the
vehicle has1.368 s time to move the pouch to the catching position starting from rest. Snapshots of the catching maneuver are depicted at the time instances
t = {0 s, 0.62 s, 0.96 s, 1.368 s, 1.82 s, 2.868 s}. During the catching maneuver, the octorotor vehicle translated2.25 m and rotated72.2◦, and had a final
angular velocity of−2.38 rad/s at the time of catching. The right hand side shows the respective control inputs. Note that the control inputs during the
catching maneuver do not represent a single catching trajectory but are the result of constantly re-planning the catching maneuver at each controller update
step.

The feasibility of the trajectories is verified with respect to
the vehicle’s input constraints as introduced in Section VIII
and presented in more detail in Appendix A. Furthermore, a
box constraint on the position using (56) was implemented to
ensure that the vehicle remains within a safe flying space.

From all feasible catching maneuvers for which also a
stopping maneuver exists, the catching maneuver with the
lowest cost

J̃trans+ αJ̃rot (62)

is selected, wherẽJtrans and J̃rot are the sums of the transla-
tional and rotational costs (22) and (33) over all concatenated
motion primitives. The design parameterα describes a trade-
off between translational and rotational costs and is set to
α = 10 in the experiments.

2) Stopping Maneuver:Using the final state of the catch-
ing maneuver as initial condition, a stopping maneuver is
planned that guides the vehicle to rest with free final position
and attitude. The adapted translational and rotational motion
primitive with the final position and attitude being subject to
optimization are given in Appendix B. A brute-force search
over five trajectories with a maneuver duration equally spaced
between0.5 s and1.5 s is performed and the feasible stopping
maneuver with the lowest cost (62) is selected.

B. Control Strategy

During the catching maneuver, the output of the high level
path planner is applied as an implicit feedback law. At each

controller update step, i.e. every20ms, the prediction of the
catching position and the remaining flight duration is refined
using the most recent motion capture data. The catching
maneuver is then re-planned starting from the vehicle’s current
state by evaluating a maximum of 8000 (40× 40× 5) trajec-
tories and the initial control inputsf andω corresponding to
the feasible catching maneuver with the lowest cost are sent
to the vehicle. If no feasible trajectory can be found, then
the last found feasible trajectory is tracked using the feedback
controller presented in [6]. The same feedback controller is
also used to track the stopping maneuver.

C. Results

The full catching and stopping maneuver for the same throw
as shown in Fig. 7 is depicted in Fig. 8. The ball’s flight lasted
1.368 s, during which the vehicle started from rest and covered
a distance of2.25m and rotated72.2◦ in order to catch
the ball. The catching maneuver is similar to the maneuver
shown in the top plot of Fig. 7 for the initial prediction
of the ball’s flight path, but is continuously re-planned as
new pose information of the vehicle and the ball become
available. During the catching maneuver, a total of 120 785
trajectories were computed, 110 400 catching maneuvers and
10 385 stopping maneuvers.

A video showing the vehicle catching the ball is
attached to the paper and can also be accessed on
https://youtu.be/0gR1ekapOAE .



12

X. CONCLUSION

This paper presented and analyzed a computationally ef-
ficient method for the rapid generation and feasibility veri-
fication of trajectories that guide a fully-actuated multirotor
vehicle from any initial to any desired end state in a given time.
The algorithm is based on recursively generating state-to-state
motion primitives and subsequently verifying their feasibility.

Computationally inexpensive motion primitives for the vehi-
cle’s position and attitude were derived that are characterized
by polynomials in time. This allowed for efficiently comput-
ing bounds on the vehicle’s acceleration, rotation angle and
rotation vector velocity, which were then used to verify the
motion primitives’ feasibility. A trajectory generation algo-
rithm based on the derived motion primitives and feasibility
tests was introduced. If the feasibility of a motion primitive
cannot be determined due to the conservative approximation of
the constraints, the trajectory generation algorithm is applied
recursively on subintervals and the resulting motion primitives
are concatenated.

The algorithm’s computational efficiency and speed is due
to the restriction of the trajectories to certain motion primitives
for which closed-form solutions exist and due to the conser-
vative approximation of the input constraints when testing the
feasibility. However, this comes at the expense of not always
being able to find a feasible trajectory for a given initial and
final state and maneuver duration although a feasible trajectory
exists. In order to characterize its performance and assess its
conservativeness, the trajectories generated by the algorithm
were compared with time-optimal maneuvers.

The feasibility of the algorithm for real-time applications
that require the evaluation of large numbers of trajectories was
verified experimentally by catching a ball thrown by a person
with a small pouch attached to an omni-directional octorotor
vehicle. For this purpose, the algorithm was embedded in a
high level path planner that performed a brute-force search
over a large number of candidate trajectories and selected
the maneuver with the lowest cost. In order to cope with
disturbances and changing final states, the trajectory planning
was repeated at each controller update step with the vehicle’s
current state as initial condition, and the output trajectory was
then applied as an implicit feedback law.

While the presented method allows for generating state-
to-state trajectories for any fully-actuated multirotor vehicle,
it is only guaranteed to find a feasible trajectory for an
infinitely large maneuver duration if the vehicle is able to
hover at any attitude. This is due to the decoupled planning of
the translational and rotational motion primitives which does
not take the input constraints into account. Considering the
algorithm’s speed, one approach to overcome this limitation
could be to embed the trajectory generation algorithm in a
high level path planner such as a rapidly exploring random
tree algorithm in order to to explore different attitude paths
and find feasible trajectories.

APPENDIX A
OCTOROTORVEHICLE INPUT CONSTRAINTS

This appendix presents the input constraints of the omni-
directional octorotor vehicle presented in [6] that is used in

this paper as an example fully-actuated multirotor vehicle to
evaluate the performance of the trajectory generation algorithm
as well as for the experimental results.

The octorotor vehicle uses reversible fixed-pitch rotors that
can produce both positive and negative thrust. Each single
rotor thrust is subject to the saturation limits

−fmax ≤ frot ≤ fmax. (63)

If the aerodynamic interference between rotors is neglected,
the collective thrustf and torquet produced by the eight
rotors can be written as

[
f

t

]

=

[
n1 . . . n8

p1 × n1 + κn1 . . . p8 × n8 + κn8

]
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=:B


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



 , (64)

wherefrot,i is the thrust magnitude generated by thei-th rotor,
ni is the rotor disk normal,pi is the rotor position relative
to the vehicle’s center of mass andκ is the rotor’s specific
thrust-to-drag ratio. The exact numerical values of the rotor
configuration can be found in [6]. The set of attainable thrusts
and torques can be written as

{Bfrot ∈ R
6 | frot ∈ R

8, ‖frot‖∞ ≤ fmax}. (65)

Applying the method presented in [30], the set of attainable
thrusts and torques (65) can be described by a polyhedron of
the form

[
Ãf Ãτ

]
[
f
t

]

� b̃. (66)

A slice through this polyhedron att = 0 then yields the set
of attainable thrusts when producing zero torque

Ãff � b̃, (67)

and can be further simplified by removing all redundant
inequalities, resulting in the rhombic dodecahedron

Aff � bf , (68)

with
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√

2

1 1 −
√

2

1 −1
√

2

1 −1 −
√

2
2 0 0


















[
cos
(

π
12

)
− sin

(
π
12

)
0

sin
(

π
12

)
cos
(

π
12

)
0

0 0 1

]

, (69)

bf = fmax

√
32
3

1. (70)

The set of attainable thrusts (68) for a mass-normalized
maximum rotor thrust offmax = 6m/s2 is illustrated in Fig.
9.

Rotating the octorotor vehicle while maintaining a thrust
in the same inertial direction typically requires some rotors
to change their spinning direction. However, reversing the
spinning direction of too many motors in rapid succession
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Fig. 9: Rhombic dodecahedron with an inradius of19.6 m/s2 describing the
set of attainable thrusts for the octorotor vehicle presented in [6].

can cause instabilities. Experiments revealed that the low-order
dynamic model with angular velocity as the control input
approximates well the true system dynamics for an angular
velocity of up toωmax = 3 rad/s per axis. The angular velocity
of the vehicle is thus constraint to the box

Aωω � bω, (71)

with

Aω =











1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1











, (72)

bω = ωmax1. (73)

APPENDIX B
DERIVATION OF MOTION PRIMITIVES

This appendix presents the derivations of the translational
and rotational motion primitive introduced in Section V. The
motion primitives’ trajectories are computed using Pontrya-
gin’s minimum principle and solutions are provided for the
different initial and final conditions used in this paper.

A. Translational Motion Primitive

We seek to find the motion primitive that minimizes the cost

Jtrans =
1
T

∫ T

0

‖
...
x(t)‖2dt. (74)

The optimal jerk
...
x(t) minimizing (74) can be computed for

each axis individually as the total cost is simply the sum of
the costs along each axis,

Jtrans =
3∑

i=1

Jtrans,i =
3∑

i=1

1
T

∫ T

0

...
x2

i (t)dt. (75)

In the following, the solution along thexi-direction,
i ∈ {1, 2, 3}, is derived. For the sake of readability, the
subscript i is omitted in the following and, for example,
the scalarx denotesxi, i.e. the i-th component ofx. Let
s = (s1, s2, s3) = (x, ẋ, ẍ) be the state andu =

...
x be the

input. The Hamiltonian is then defined by

H(s, u, λ) =
1
T

u2 + λ1s2 + λ2s3 + λ3u, (76)

whereλ are the adjoint variables that must satisfy

λ̇ = −∇sH(s, u, λ) = (0,−λ1,−λ2) . (77)

The result of the adjoint differential equation is

λ1(t) = −
1
T

2c1, (78)

λ2(t) =
1
T

(2c1t + 2c2), (79)

λ3(t) =
1
T

(−c1t
2 − 2c2t − 2c3). (80)

The optimal controlu∗ that minimizes the cost function is
obtained by

u∗(t) = arg min
u

H(s, u, λ), (81)

=
c1

2
t2 + c2t + c3, (82)

with the corresponding optimal state trajectories

s∗1(t) = c1
120 t5 + c2

24 t4 + c3
6 t3 + c4

2 t2 + c5t + c6, (83)

s∗2(t) = c1
24 t4 + c2

6 t3 + c3
2 t2 + c4t + c5, (84)

s∗3(t) = c1
6 t3 + c2

2 t2 + c3t + c4. (85)

Although Pontryagin’s minimum principle is only a necessary
condition for optimality, it can be shown thatu∗ indeed
minimizes (74) by exploiting the fact that the state dynamics
are linear and the cost is convex [31].

If the initial and final state are fully defined, i.e.
s(0) = (p0, v0, a0) ands(T ) = (pT , vT , aT ), the coefficients
c1, . . . , c6 can be determined by evaluating the optimal state
trajectorys∗(t) at time t = 0,




c4

c5

c6



 =




a0

v0

p0



 , (86)

and at timet = T ,



c1

c2

c3



 =
1

T 5




720 −360T 60T 2

−360T 168T 2 −24T 3

60T 2 −24T 3 3T 4








Δp
Δv
Δa



 , (87)

where



Δp
Δv
Δa



 =




pT − p0 − v0T − 1

2a0T
2

vT − v0 − a0T
aT − a0



 . (88)
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By combining the optimal state trajectories (83)-(85) of each
axis, the translational motion primitive’s position, velocity and
acceleration trajectory (16)-(18) are obtained.

If a component of the initial or final state is left free and
subject to optimization, then its corresponding adjoint variable
must be equal to zero at timet = 0 or t = T , respectively.
The solutions for the different boundary conditions used in this
paper are given in the following. In any case, the trajectories
(16)-(18) and cost (22) as introduced in Section V-A remain
valid.

State-To-State with Free Initial Acceleration:



c3

c5

c6



 =




0
v0

p0



 , (89)




c1

c2

c4



 =
1

3T 5




960 −600T 120T 2

−360T 216T 2 −36T 3

20T 3 −8T 4 T 5








Δp
Δv
Δa



 , (90)

where



Δp
Δv
Δa



 =




pT − p0 − v0T

vT − v0

aT



 . (91)

State-To-Rest (vT = aT = 0) with Free Final Position:



c6

c5

c4



 =




p0

v0

a0



 , (92)




c1

c2

c3



 =
1

T 3




0 0
12 −6T

−6T 2T 2




[
v0 + a0T

a0

]

. (93)

B. Rotational Motion Primitive

We seek to find the motion primitive that minimizes the cost

Jrot =
1
T

∫ T

0

‖r̈(t)‖2dt. (94)

As with the translational motion primitive, the optimal rotation
vector acceleration̈r(t) minimizing (94) can be computed for
each axis separately and is derived in the following for the
ri-coordinate,i ∈ {1, 2, 3}. Again, for the sake of readability,
the subscripti is omitted in the following. Lets = (r, ṙ) be
the state andu = r̈ be the input. The Hamiltonian is then
defined by

H(s, u, λ) =
1
T

u2 + λ1s2 + λ2u, (95)

where the adjoint variablesλ must satisfy

λ̇ = −∇sH(s, u, λ) = (0,−λ1). (96)

The result of the adjoint differential equation is

λ1(t) =
1
T

2d1, (97)

λ2(t) =
1
T

(−2d1t − 2d2). (98)

The optimal control inputu∗ that minimizes the cost function
is obtained by

u∗(t) = arg min
u

H(s, u, λ), (99)

= d1t + d2, (100)

with the corresponding optimal state trajectories

s∗1(t) = d1
6 t3 + d2

2 t2 + d3t + d4, (101)

s∗2(t) = d1
2 t2 + d2t + d3. (102)

Since the system dynamics are linear and the cost is convex, it
can be shown, analogous to the translational motion primitive,
that the control inputu∗ indeed minimizes the cost (94).

Let R0 and RT be the initial and final attitude and let
ω0 and ωT denote the initial and final angular velocity,
respectively. As explained in Section V-B, the motion primitive
is always planned from an attitude ofr(0) = 0 to an attitude
of r(T ) = re, wherere is the rotation betweenR0 andRT ,

[re] := log(RT
0 RT ), (103)

and afterwards rotated byR0 to satisfy the original attitude
constraints. The initial and final states are then given by
s(0) = (0, ω0) and s(T ) = (re, ω̃T ), where ω̃T is defined
to be

ω̃T := W−1(re)ωT . (104)

The coefficientsd1, . . . , d4 can be determined by evaluating
the optimal state trajectorys∗(t) at time t = 0,

[
d3

d4

]

=

[
ω0

0

]

, (105)

and at timet = T ,
[
d1

d2

]

=
1

T 3

[
−12 6T
6T −2T 2

] [
re − ω0T
ω̃T − ω0

]

. (106)

Because the motion primitive is always planned from an initial
attitude ofr(0) = 0, the coefficientd4 is always zero and will
be omitted in the remainder of this section. Finally, combining
the optimal state trajectories (101) and (102) along each axis
and inserting it into (3) and (9) yields the rotational motion
primitive’s attitude and angular velocity trajectory (26) and
(27).

Analogous to the translational motion primitive, if any
component of the initial or final state is subject to optimization,
the coefficientsd1, d2 andd3 can be determined by evaluating
the adapted boundary conditions of the motion primitive, and
is done in the following for the different boundary conditions
used in this paper. In any case, the trajectories (26) and (27)
and cost (33) as introduced in Section V-B remain valid.

State-To-State with Free Initial Angular Velocity:

d2 = 0, (107)
[
d1

d3

]

=
1

2T 3

[
−6 6T
3T 2 −T 3

] [
re

ω̃T

]

. (108)

State-To-Rest (̃ωT = 0) with Free Final Attitude:

d3 = ω0, (109)
[
d1

d2

]

=

[
0

−ω0
T

]

. (110)
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APPENDIX C
DERIVATION OF MINIMUM -VOLUME BOUNDING BALLS

In this appendix, the minimum-volume bounding balls on
a rotation and angular velocity map for a given maximum
rotation angle are derived. The findings are used to approx-
imate the thrust and angular velocity constraints during the
verification of the motion primitives’ feasibility in Section VI.

A. Bounding Ball on Rotation

Consider a vectory ∈ R3 and let y′ be the result of
rotatingy about any rotation axisn ∈ S2 by a rotation angle
ϕ ∈ [0, ϕmax], i.e.

y′ = e[ϕn]y, (111)

=
(
I + sin ϕ[n] + (1 − cos ϕ) [n]2

)
y. (112)

Claim: B(δfy, ρf‖y‖) is the minimum-volume bounding
ball enclosing ally′, with

δf = cos ϕ̃,

ρf = sin ϕ̃,

ϕ̃ = min
[
ϕmax,

π

2

]
.

(113)

Proof: Note that independent of the rotation axis, the two
terms[n]y and[n]2y in (112) are perpendicular to each other.
For an angleα ∈ [0, π] betweenn and y, the latter term
can be expressed by a component parallel and a component
perpendicular toy, respectively,

[n]2y =
(
nnT − I

)
y, (114)

= cos(α)‖y‖n − y, (115)

= cos(α)‖y‖
(
cos(α)n‖ + sin(α)n⊥

)
− y, (116)

= − sin(α)2‖y‖n‖ + sin(α) cos(α)‖y‖n⊥, (117)

where

n‖ =
y

‖y‖
, andn⊥ =

n − n‖ cos(α)

‖n − n‖ cos(α)‖
. (118)

Furthermore, it holds that‖[n]y‖ = sin(α)‖y‖.
First only rotations with a maximum rotation angle of

ϕmax ∈ [0, π
2 ], are analyzed. In this case, the maximum

distance of anyy′ from the ball’s center is equal or smaller
than the ball’s radius,
∥
∥(I + sin(ϕ)[n] + (1 − cos(ϕ)) [n]2

)
y − cos(ϕmax)y

∥
∥2

=
∥
∥(1 − cos(ϕmax))y + (1 − cos(ϕ))[n]2y + sin(ϕ)[n]y

∥
∥2

=
(
(1 − cos(ϕmax)) − (1 − cos(ϕ)) sin(α)2

)2
‖y‖2

+
(
(1 − cos(ϕ)) sin(α) cos(α)

)2 ‖y‖2 +
(
sin(ϕ) sin(α)

)2 ‖y‖2

= (1 − cos(ϕmax))
2 ‖y‖2

− 2(1 − cos(ϕmax))(1 − cos(ϕ)) sin(α)2‖y‖2

+ (1 − cos(ϕ))2 sin(α)2
(
sin(α)2 + cos(α)2

)
‖y‖2 (119)

+ sin2(ϕ) sin(α)2‖y‖2

= (1 − cos(ϕmax))
2 ‖y‖2 + 2 cos(ϕmax)(1 − cos(ϕ)) sin(α)2 ‖y‖2

≤
(
(1 − cos(ϕmax))

2 + 2 cos(ϕmax)(1 − cos(ϕ))
)
‖y‖2

≤
(
(1 − cos(ϕmax))

2 + 2 cos(ϕmax)(1 − cos(ϕmax))
)
‖y‖2

≤ sin(ϕmax)
2‖y‖2,

O

y

ϕmax

ϕmax

y1

y2

δf‖y‖

ρf‖y‖

e[ϕn]y

Fig. 10: Illustration of the minimum-volume bounding ball on a rotation with
a maximum rotation angle ofϕmax. For the sake of simplicity, only the two-
dimensional case is considered with the rotation axisn pointing along the
y3-axis. Any pointy that is rotated about the originO by at most an angle of
ϕmax lies on the circular arc segment with radius‖y‖ and subtending angle
2ϕmax. The minimum-volume bounding ball enclosing the entire circular arc
segment is centered atδfy and has a radius of lengthρf‖y‖.

and the ball therefore encloses ally′. Note that (119) holds
with equality for any rotation axis perpendicular toy and a
rotation angle ofϕ = ϕmax. Therefore, the ball has the minimal
radius for the given center. Furthermore, in that case, the ball’s
radius has the same length as the middle term of (112) that is
perpendicular toy and any change of the ball’s center would
therefore require increasing the ball’s radius. Hence, the ball
described by (113) is the minimum-volume bounding ball.

If ϕmax = π
2 , the bounding ball has a radius of‖y‖ and is

centered at the origin. Therefore, it also encloses all pointsy′

under any rotation with a rotation angle larger thanπ
2 . �

A visual interpretation of the minimum-volume bounding
ball for a rotation with a rotation angle smaller thanϕmax is
shown in Fig. 10.

B. Bounding Ball on Angular Velocity Map

Let y ∈ R3 be any rotation vector velocity and definey′

to be the outcome of mappingy to angular velocities under
any rotation with rotation axisn ∈ S2 and a rotation angle
ϕ ∈ [0, ϕmax], i.e.

y′ = W (ϕn)y, (120)

=

(

I −
1 − cos ϕ

ϕ
[n] +

ϕ − sin ϕ

ϕ
[n]2

)

y. (121)

Claim: B(δωy, ρω‖y‖) is the minimum-volume bounding
ball enclosing ally′ with

δω =

{
1, if ϕmax = 0,
sin(ϕ̃)

ϕ̃ , otherwise,

ρω =

{
0, if ϕmax = 0,
1−cos(ϕ̃)

ϕ̃ , otherwise,

ϕ̃ = min[ϕmax, ϕ],

(122)
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whereϕ is defined the to be the rotation angle at which the
ball radius is maximized,

ϕ := arg max
ϕ>0

1 − cos(ϕ)
ϕ

. (123)

Proof: Equation (121) is of the same form as (112) and
therefore the proof follows the same argumentation as for the
minimum-volume bounding ball on rotations.

First, it can easily be verified that (122) is the minimum-
volume bounding ball forϕmax = 0. Next, rotations with a
maximum rotation angle ofϕmax ∈ (0, ϕ] are considered. As
in (119), it can be shown that the maximum distance ofy′ from
the ball’s center is equal or smaller than the ball’s radius, i.e.
∥
∥
∥
∥

(
I −

1 − cos(ϕ)

ϕ
[n] +

ϕ − sin(ϕ)

ϕ
[n]2

)
y −

sin(ϕmax)

ϕmax
y

∥
∥
∥
∥

2

≤
(

1 − cos(ϕmax)

ϕmax

)2

‖y‖2,

(124)

and that the ball therefore encloses ally′. Equation (124) holds
with equality for any rotation axis perpendicular toy and a
rotation angle ofϕ = ϕmax. Following the same argumentation
as for the bounding ball on rotations, any change of the ball’s
center would require to increase the ball’s radius and hence
the ball described by (122) is the minimum-volume bounding
ball under any rotation with a maximum rotation angle of
ϕmax = ϕ.

Furthermore, again closely following the proof in (119), it
can also be shown that
∥
∥
∥
∥

(
I −

1 − cos(ϕ)

ϕ
[n] +

ϕ − sin(ϕ)

ϕ
[n]2

)
y −

sin(ϕ)

ϕ
y

∥
∥
∥
∥

2

≤
(

1 − cos(ϕ)

ϕ

)2

‖y‖2

(125)

holds for anyϕ > 0, which implies that ally′ under rotations
with a rotation angleϕ > ϕ are enclosed by the bounding ball
for a maximum angle ofϕmax = ϕ. �
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