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Abstract—This paper presents a computationally efficient
method of generating state-to-state trajectories for fully-actuated
multirotor vehicles. The approach consists of computing trans-
lational and rotational motion primitives that guide the vehicle
from any initial state, defined by position, velocity and attitude,
to any end state in a given time, and subsequently verifying
the motion primitives’ feasibility. Computationally light-weight
motion primitives for which closed-form solutions exist are pre-
sented and an efficient method to test their feasibility is derived.
The algorithm is shown to be able to generate trajectories and
verify their feasibility within a few microseconds and can thus be
used as an implicit feedback law or in high level path planners
that involve evaluating a large number of possible trajectories

constraints. In many of the envisioned application areas such
as aerial manipulation or filming, the environment may con-
stantly change: the target object may move; large disturbances
may throw the vehicle off its originally planned course; or
information about the environment may only become available
in mid-flight. In such dynamic environments, pre-planned
trajectories may become suboptimal or even infeasible, and
thus a method to constantly adapt the trajectory in real time is
required. Furthermore, in many of these scenarios there exist
multiple trajectories that achieve the same high level goal,
and hence, a trajectory generator is needed that is capable of

to achieve some high level goal. The algorithm’s performance
is analyzed by comparing it with time-optimal trajectories. An

experimental demonstration that requires the computation of
trajectories for a large set of end states in real time is used
to evaluate the approach.

rapidly evaluating a large set of trajectories and selecting the
best trajectory with respect to some performance measure.

B. Related Work

A number of trajectory generation algorithms for traditional
multirotor vehicles have been presented in recent years. These
algorithms can roughly be divided into three groups: A first

. INTRODUCTION group of algorithms generates trajectories based on path prim-

ULTIROTOR vehicles have become very popular aeridtives, for example lines [7], polynomials [8], or splines [9],

robotic platforms due to their high maneuverability andnd subsequently parametrizes the paths in time such that the
ability to hover. However, one of the limitations of traditionalynamic constraints are satisfied. A second group consists of
multirotor vehicles is their inherent under-actuation, i.e. the@lgorithms that make use of the differential flatness of the
inability to independently control their thrust and torque isystem to approximate the input constraints by constraints on
all three dimensions. In order to increase performance critegasition derivatives. Trajectories are then generated by solving
such as flight duration or payload, all rotors are typicallgn optimal control problem on the translational kinematics
arranged in a single plane, thereby limiting the thrust to with the objective of, for example, minimizing the maneuver
single direction and coupling the vehicle’s translational ardlration [10] or some position derivatives [11], [12]. A compu-
rotational dynamics. This limits not only the set of feasibl&ationally very inexpensive method of this group is presented
trajectories, but also the vehicle’s ability to instantaneousig [13], where the input constraints are neglected when solving
resist arbitrary force and torque disturbances as required whba optimization problem and an efficient method is used sub-
flying high precision maneuvers or when physically interactingequently to check whether the resulting trajectories violate the
with the environment. To overcome these limitations, severiaput constraints. Finally, a third group of algorithms generates
novel multirotor vehicle designs with non-planar rotor configrajectories by solving an optimal control problem on the full
urations have been developed in the past years such assystem dynamics numerically, either leveraging Pontryagin’s
hexrotor vehicles [1]-[5] or the octorotor vehicle [6]. Theseninimum principle [14] or using numerical optimal control
multirotor vehicles are capable of independently generatiptp], [16].
thrust and torque in any direction and hence allow control of Although the aforementioned algorithms can be used to
all of their six degrees-of-freedom independently. generate trajectories for the novel fully-actuated multirotor
vehicles, they do not take full advantage of the dynamic
capabilities of these vehicles as they only generate attitude
) ) i _.trajectories that are directly coupled with the vehicle’s position
) A key feature requwe_d to EXpI(_)'t the_ full dy_namlc CapablllTrajectory. Some algorithms to generate decoupled position
ties of these novel multirotor vehlclgs is atraje_ctory generat hd attitude trajectories have been developed for spacecraft
that can compute a large set of position and attitude flight patlys.iations. For example in [17] and [18], trajectories are gen-
in real time while respecting the system dynamics and NPYtated using separate position and attitude path primitives that
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A. Goal and Motivation



usually not fast enough to apply in real time to multirotovaries for each throw, the trajectories cannot be pre-planned
vehicles whose position and attitude control loops typicalgnd have to be generated in real time.

run at rates of50-100Hz [19], [20] and hence demand the

trajectories to be generated in a few milliseconds. D. Outline

The remainder of this paper is organized as follows: Section
C. Contribution Il introduces preliminaries on two attitude r_epresentations that
are used throughout the paper. In Section lll, the system
This paper presents and analyzes a trajectory generatigihamics and the input constraints of the multirotor vehicles
algorithm for fully-actuated multirotor vehicles capable ofgnsidered in this paper are presented. In Section 1V, the
rapidly generating thousands of trajectories which guide th@jectory generation problem is formally stated. In Section
vehicle from any initial state to any end state in a given timgz motion primitives that guide the vehicle from any initial to
The algorithm is similar to the approach presented in [13}y final state are introduced, and a method to determine their
and is based on concatenating computationally light-weigfdasibility is presented in Section VI. Section VII presents
motion primitives for which closed-form solutions exist. Whepy trajectory generation algorithm that fulfills the trajectory
generating the motion primitives, the input constraints aggsneration problem. The algorithm’s performance compared
neglected and their feasibility is then validated a posteriori iy the multirotor vehicle’s physical limits as well as results
relating the motion primitives’ position and attitude trajectoriegn the computational costs are presented in Section VIII. An
to the input constraints using the multirotor vehicle's syste@yperimental evaluation of the trajectory generation algorithm

planar rotor configurations were considered, i.e. vehicles th&ction X.

can only produce a thrust in a single direction. For these aerial
vehicles, it is sufficient to only compute translational motion [l. PRELIMINARIES

primitives as this fU”y defines the vehicle’s state and control In this Section’ two attitude representations that will be
inputs (up to a yaw rotation). However, this is not sufficienised throughout the paper are introduced: the rotation vector

for fully-actuated aerial vehicles and this paper thus presepts R3 and the rotation matrixR € SO(3), where SQ@3)
a method to generate both translational and rotational motigénotes the Special Orthogonal Group, defined as

rimitives and introduces sufficient conditions to verify their
feasibilty. Y SO3) = {RERVIIR'R=RR" =1 M
When computing the motion primitives, the vehicle’s ability anddet(R) = 1},
to control all of its six degrees of freedom independently ighere I € R3*3 is the identity matrix. The rotation matrix
used and separate motion primitives for the translational apghresentation is convenient for rotating vectors or expressing
rotational motion are computed, each by solving an optim@le attitude kinematics. However, the constraints (1) on the
control problem. For the translational motion primitive, th%roup Of rotation matrices renders |t d|ff|cu|t to use them
Objective iS to minimize the jerk, and for the rOtational motiolfor attitude trajectory generation_ Rotation vectors on the
primitive, the objective is to minimize the trajectory’s rotationzontrary are an unconstrained three-parameter representation,
vector acceleration, an approximation of the angular accelgfyt rotating vectors or computing the attitude kinematics is
ation. In both cases, the solution trajectories are characterizggre complicated. For these reasons, the attitude trajectories in
by polynomials in time, a key property that is used for the faghis paper will be planned using rotation vectors, and rotation
and efficient validation of the trajectories’ feasibility. matrices will be used to represent attitudes in all other cases. In
Since the algorithm is able to generate trajectories for arkjre following, the conversion between the two representations
trary initial states, final states and maneuver duration, it cafd their relation to angular velocity is presented.
be applied to a large class of trajectory generation problemsany arbitrary rotation can be described by a rotation axis
Furthermore, the algorithm is shown to be computationalbhd a rotation angle about this axis (see for example [24], and
efficient and can generate approximately 500 000 trajectorie§erences therein). Let € S? be a unit vector which rep-
per second when implemented on a standard laptop computggents the axis of rotation, whe$é = {y € R? | yy = 1},

Due to these two properties, the algorithm is well suited to bg\d lety € R be the rotation angle. The rotation vector
used in high level path planners such as probabilistic roadm@@scribing this rotation is defined to be

[21] or rapidly exploring random tree algorithms [22] that

involve evaluating large numbers of candidate trajectories, or T=en. @
as an implicit feedback law similar to model predictive contrallote that the rotation vector representation is not unique. In
[23]. fact, any rotation vector = ¢n + 2kmn, with £ any integer,

The algorithm’s performance is assessed through an expeeipresents the same physical attitude. The rotation madrix
mental demonstration that requires doing a search over a lacgeresponding to the physical attitude represented isygiven
set of possible end states in real time. The goal is for a fullipy [24]
actuated multirotor vehicle to catch a thrown ball in a small
pouch. The trajectory generator is embedded in a high level
path planner that evaluates a set of possible end states such that .
the ball is caught in the pouch. Because the ball’s flight path il

R =el"], (3)
1 — cos |7l

[T‘] + ”,r”Q [,',,]27 (4)

sin ||z |




where|| - || denotes the Euclidean norwirTr and[r] is the
skew-symmetric cross-product matrix representatiom,of

0 —T3 T2
[r]=] rs 0 -r. (5)
—T9 T1 0
Conversely, given a rotation matriR, the rotation vector is z3
obtained by
[r] = log R, (6)
P T
= R—-—R 7
QSinga ( ) ) ( ) 1o T2
wherep satisfiesl + 2 cos ¢ = trace(R) andp € [0, 7]. Fig. 1: lllustration of a fully-actuated multirotor vehicle with its position

Let R(t) be a curve in SCB) describing the attitude of g described byr = (z1,x2,23) in the inertial frame. The vehicle’s control
- . . . . _inputs are the mass-normalized collective thrisand the angular velocity
rigid body relative to a f|x§d _coordlna'te frame. The relatiof)” |, addition, gravityg is acting upon the vehicle.
between the angular velocity in body-fixed coordinateand
the rotation matrix and its temporal derivative is given by
T gyroscope feedback. The vehicle’s attitude dynamics are thus
[w] = R'R. (8) . : .
neglected and the equations of motion can be written as

An analogous relation can be obtained when the attitude of a

body is described by a rotation vectoft). Differentiating (4) m =Rf-g, (1)
with respect to time and inserting it into (8) yields [24] R = Rlw], (12)
w=W(r)r, (9) whereg is the acceleration due to gravity, expressed in the

inertial frame.

Note that more detailed models for the dynamics of multi-
rotor vehicles exist that incorporate, for example, aerodynamic
effects such as drag [25]. However, the preceding model
captures the most relevant dynamics and greatly simplifies the
I1l. DYNAMIC MODEL trajectory generation problem, which then again allows com-

In this section, the multirotor vehicle dynamics and its inputensation for model inaccuracies by continuously re-planning
constraints are presented. Only fully-actuated multirotor vefie trajectories. It should further be noted that by taking the
cles are considered, i.e. multirotor vehicles that can gener&®trol inputs as the collective thrust and angular velocity,
thrust and torque in all three dimensions independently e vehicle's rotor configuration, i.e. the number of rotors,
each other. For ease of notation, vectors may be expressed'8¥ Positions and orientations, is hidden from the equations

n-tuplesz = (z1,s,...,x,) with dimensions and stacking©f motion by the on-board angular velocity controller that
clear from context. computes the individual rotor thrusts based on the angular

velocity error and the commanded collective thrust. As a result,
the differential equations (11) and (12) describing the system

A. Equations of Motion . . .
. ] . o dynamics hold true for any fully-actuated multirotor vehicle,
The multirotor vehicle is modelled as a rigid body. Thgych as the vehicles presented in [1]-[6].

translational degrees-of-freedom are described by the position

of the multirotor vehicle’s center of mass = (z1,x2,x3), )

expressed in an inertial frame, and its rotational degreé%— Input Constraints

of-freedom are parametrized using the rotation matrix It is assumed that the control inputs are subject to satu-

R € SO(3). rations. The attainable collective thrust is constrained to the
The multirotor vehicle’s control inputs are considered tpolyhedron

be the mass-normalized collective thryst (f1, f2, f3) and Af<b 13

the angular velocityw = (w1, ws,ws), both expressed in the 1F =0y, (13)

vehicle’s body-fixed coordinate frame as depicted in Fig. uhere the symbok denotes componentwise inequality. The

The thrust dynamics of multirotor vehicles are typically mucfaces of the polyhedron described by (13) encode the thrust

faster than their rigid body dynamics, and hence it is assumigdlits in different directions that are due to the orientation

that the commanded thrust can be achieved instantaneought saturation limits of the individual rotors. Examples of

Likewise, it is assumed that the commanded angular velagtainable thrust volumes for fully-actuated multirotor vehicles

ity can be changed instantaneously. Because of multirotgdn be found in [4] and [5].

vehicles’ low rotational inertia and their ability to produce The angular velocity is assumed to be limited to the

large torques due to the off-center mounting of their rotorgplyhedron

it is assumed that a high-bandwidth on-board controller can

track the angular velocity commands sufficiently fast using Apw = by, (14)

whereW (r) = I if ||r|| = 0, and otherwise

_ 1 —cos|lr| ]| = sin [|7|

T) = 'S T2.
W =I-—pp i+ —pp

(10)



where the limits can be due to, for example, the measuremenimitive that minimizes the average jerk squared on the time
range of the gyroscope used for feedback or the range foterval [0, 7], i.e.

which the angular velocity controller responds sufficiently fast -

to angular velocity commands such that the simplified system Jrane = 1 / 1% ()| 2. (15)
dynamics (11) and (12) describe the system behaviour well. T

An gxamplg of_angL_JIar velocit_y constraints for the mUItirOto’fhis cost function is chosen because it is computationally

vehlc_:le [6] is given in App_end_lx .A' . . convenient, a closed-form solution exists, and it works well

Without loss of generality, it |s_assumed in the fOHOW'nQn practice. Furthermore, it yields a position trajectory that is

that all rows of A and A,, are unit vectors. three times differentiable with respect to time. Consequently,
the corresponding control inpuf can be made continuous

IV. PROBLEM STATEMENT even when concatenating multiple motion primitives and is

The trajectory generation problem addressed in this pagBerefore easy to track.
can be formulated as follows: given an initial state at time The optimal jerk&(¢) minimizing (15) can be computed
t = 0, consisting of position, velocity and attitude, find controésing Pontryagin’s minimum principle (see for example [26])
inputs f(t) and w(t), t € [0,T], that steer the multirotor and is derived in Appendix B. Its corresponding position,
vehicle to a desired final state at time= 7', while satisfying Velocity and acceleration trajectories can be shown to be of
the system dynamics (11) and (12) and input constraints (1Bg form
and (14). Furthermore, the generation of trajectories should e 45 L cagd | ensd o e
be computationally inexpensive such that a large number of x(t) = 130" + 54t + T+ G+ est + e, (16)
trajectories can be computed in real time. w(t) = St* + 2% + L7 + eat + s, (7)
The approach presented in the following consists of two & (t) = %tff 4 %R + est+ ey, (18)
steps: In a first step, motion primitives guiding the vehicle
from any initial to any desired end state in a given time The constraints on the initial and final position and velocity
are planned while the input constraints are ignored. In ad the motion primitive only partially define the trajectories
second step, the control inputs are recovered from the motid®)-(18). The motion primitive’s initial and final acceleration
primitives’ position and attitude trajectory using the systeman either be left free and subject to optimization, or they can
dynamics and then verified for input feasibility. If feasibilitybe used to ensure smooth transitions on the control igfut
cannot be established, the two steps are recursively performéten concatenating multiple motion primitives by setting the
on subintervals and the resulting motion primitives are coinitial acceleration to be equal to the final acceleration of the
catenated. preceding motion primitive, and likewise for the final accel-
eration. If not mentioned otherwise, it will be assumed in the
V. MOTION PRIMITIVE GENERATION remainder of this paper that also the initial and final acceler-
i _ i L i _ation are defined, such th&t(0), £(0),£(0)) = (po, vo, ao)
In this section, motion primitives that guide the mUIt'rOto'énd(m(T),a’:(T),d‘:(T)) — (pr,vr,ar). The components of

vehicle from any initial state to any desired end state in@e coefficientse;, . .., ¢; along thei-th axis are then given
given time are presented. As in [13] for traditional multirotop,

vehicles, the motion primitives are characterized by polynomi-

als in time. However, since fully-actuated multirotor vehicles |[c; ; 720 —360T 6072 Ap;

1

can independently control their position and attitude, it is not |cz; | = 75 —3607 16872 —24T3| |Av;|, (19)
sufficient to only compute a translational motion primitive |cs; 6072 —2473  3T* Aa;
as for traditional multirotor vehicles, but a rotational motion
primitive also needs to be computed. and

In the following, separate motion primitives for the vehicle’s Cai ao,;
position and attitude are planned in the position coordinates 657'14 = |vosil, (20)
x and attitude coordinates respectively. It can be seen from Co.i Do,

the system dynamics (11) and (12) that in order to be able ) ,
to recover the motion primitives’ corresponding control input&here, for examples; ; is the component of, along thei-th
f(t) and w(t), the position trajectoryz(t) needs to be at 8xis and

least twice differentiable with respect to time, and the attitude Ap; pri — o, — 0T — SagT?
trajectory »(t), or equivalentlyR(t), at least once. Without Av|l = vpi—wvos—ao.T . (D
loss of generality due to time invariance, the motion primitives Aa; Cary _ ao i '

are planned on the intervé, 7.
The cost of the motion primitive can then be computed to be

i i imiti 1 1 1
A. Translational Motion Primitive Jrans= —cTer T + ~eTeyT? + = (cchg n Cgcg> T2
The goal of the translational motion primitive is to guide the 20 . T4 3
vehicle from any initial position and velocity to any desired teyesT +czes.

end position and velocity in timé&. We seek to find the motion (22)



B. Rotational Motion Primitive with

The goal of the rotational motion primitive is to guide the r(t) = 4t + L2424 dyt, (28)
\{ehlcle from any mmgl attitude t(_) any Qeg_lred end a_tu.IU(_je in i(t) = % 2 4 dot + ds. (29)
time 7. We seek to find the motion primitive that minimizes
the average rotation vector acceleration squared on the timénalogous to the translational motion primitive, the con-
interval [0, 77, i.e. straints on the initial and final attitude of the motion primitive
only partially define the attitude and angular velocity trajectory
(26)-(29). The initial and final angular velocity can either
be left free and subject to optimization, or they can be

used to ensure smooth transitions of the control ingut

$|m|lar to the translat!oqal motion pr_|m|t|ve, this co;t funct|or\1Nhen concatenating motion primitives by setting the initial
is chosen because it is computationally convenient, ha

losed-f uti K i i 4 vield Saﬁ‘gular velocity to be equal to the final angular velocity
closed-form solution, works well in practice, and yields ag¢ e preceding motion primitive, and analogously for the
a_ltt'tUde trajectory that is twice dlffer_entlable W'th respect i, angular velocity. If not mentioned otherwise, it will be

time. Consequently, the corresponding control inpuican  55qmed in the remainder of this paper that the initial and final

be made continuous and is thus easy to track even Wheny,ar velocityw, andwy are also defined. The components
concatenating multiple motion primitives, which is exploite f the coefficientsd, , d» and ds along thei-th axis are then
in Section VII. In [27], it is shown that the rotation vector,

1 T
Joi= 7 [ IOl (23)
0

I o given by
acceleration approaches the angular acceleratioif either )
« the rotation is small, i.e|j=(t)|| — 0, B“] =73 {_6;2 _6221:2} Kg” __wf)lT} . (30)
« the rotation is slow, i.e||7 ()| — 0, 28 Ty — W04
« or the rotation axis does not vary considerably, i.@nd
Z(r,7) — 0 and Z(r,#) — 0. dsi = wos, (31)
Minimizing the cost (23) can therefore be interpreted as an o )
approximation of minimizing the average angular acceleratig{lerewr is defined to be
squared, Op = W(r,)wr. (32)
1 (T The cost of the motion primitive can then be shown to be
J= [ le]Pd, (24) P
T 0 1 T 2 T T
Jrot = §d1 diT% + d; do2T + d5 ds. (33)
however, in general, the latter does not admit a closed-form
solution and is hence not well-suited to generate a large €t Discussion

of trajectories in real time. ) ) o ]
Let R, and Ry be the initial and final attitude, respectively. Generating the motion primitives can be done very effi-
ently. In the case of the translational motion primitive, it

In order to be able to compute the maximum rotation ang?é : ) X
in closed-form (see Section VI-A) and for the solution t(?nly requires the evaluation of (19) and (20) for each axis.

approximate the minimum angular acceleration trajectory Wellﬂ the case of the rotational motion primitive, it requires the
the motion primitive is always planned from an initial attitudéev":llualtlon of (25) and (32), and subsequently (30) and (31)

of (0) = 0 to a final attitude of(T) = r. such that|r(t)]| for e_a_ch a>§is. In addition, cqlculating the costs of the motion

remains small, where, is the rotation betweei, and Ry, pnmmyes is also computatmnally inexpensive gnd can be
done in closed-form using (22) and (33). If multiple motion

[re] = log(RYRy), (25) primitives achieve the same high level goal, these costs could

be used to compare the aggressiveness of the different motion

and the resulting motion primitive is then rotated By to primitives.

satisfy the original attitude conditiohs

As with the translational motion primitive, the optimal rota- VI. VERIFICATION OF FEASIBILITY

tion vector acceleratiofi(t) minimizing (23) can be computed | this section a method to efficiently verify the motion

using Pontryagin’s minimum principle (see Appendix B for grimitives’ feasibility is introduced. In [13], the feasibility
derivation) and yields attitude and angular velocity trajectorig§ the motion primitives was determined by finding extreme

of the form points of the motion primitive’s position trajectory (and its
B ()] time derivatives) and relating them to the control input con-

R(t) = Roe ’ (26) straints using the differential flatness of traditional multirotor

w(t) = W(r(t)r(t), (27) vehicles. Due to the different system dynamics of fully-
actuated multirotor vehicles and the decoupled planning of

INote that (25) computes the rotation vecter such that|r.|| < =, the translational and rotational motion primitive, the feasibility
i.e. such that the rotation angle is smaller tharBy adding2krre/||rc|| to  checks of [13] cannot be applied to the motion primitives of

(25), with k& being any integer, the motion primitive ends at the same physic . . . . e,
attitude but performs an addition&lfull rotations. Throughout this papek, @ectlon V and a different method to Ve”fy their fea5|b'l|ty 1S

is always chosen to be zero. devised.



Although the motion primitives for the position and attitudé he lower and upper bounds are expressed in the inertial frame
are planned independently of each other, their feasibility caier computational efficiency reasons (see Section VII) and are
not be verified separately as the position and attitude dynamadstained by evaluating:(¢) at the boundaries of the interval
are coupled by the thrust input. The translational coordinatfs 7] and by solving for the extrema of the acceleratibft)
are expressed in an inertial frame, but the thrust input and &®ng each axis on the intervél, 7', which is essentially a
constraints are expressed in the vehicle’s body frame and henwatter of finding the roots of its derivative (a polynomial of
depend on the vehicle’s attitude. In the following, verifying therder at most two).
motion primitives’ feasibility is done by first computing the The constraint (37) can then be formulated as
maximum rotation angle of the rotational motion primitive, _
and then verifying wr?ether the control inputs satri)sfy their Asel W by, VheH, Vie[0,T).  (41)
constraints under any rotation with a rotation angle equal pr Appendix C, it is shown that any poinat € R? remains in

smaller than the maximum rotation angle. a closed ballB with centerd;y and minimal radius||y||
under any rotation with a maximum rotation angle @fax,

A. Maximum Rotation Angle l.e.
It can be seen from the multirotor vehicle’s attitude given in "Wy e B 6y, prllyll), Vte[0,T], (42

(26) that the maximum rotation angle relative to the vehicle\’ﬁ

initial attitude Ry is given by here

I (34 0~ sl
= max ||7(?)|], . e
Pmax = BT py = sin(@), (43)
and can be solved by finding the roots of ¢ = min [tpmax, g} .
% (r(t)r(®)) = 0. (35) Therefore, using (42), a sufficient condition for thrust feasi-
bility is
By design of the rotational motion primitive(¢) always has
one root att = 0 and consequently (35) also has one root at Af (Orh + prl|hl|A) 2 bf, VhETH, (44)
t = 0. Therefore, finding the other roots of (35) is equivalent VA € B(0,1),

to finding the roots of a quartic polynomial, for which closedg, equivalently (as all row vectors od ; are unit vectors)
form solutions exist [28].
Agdrh 2 by —pg|lh|1, VheH, (45)

B. Thrust Input Feasibility wherel = (1,...,1).

The thrust needed during the execution of the motion Since the bounding bo{ is a convex set, every point in
primitives can be obtained through the translational dynami& ¢an be written as a convex combination of the vertices

and is given by of ‘H. Furthermore, it is straightforward to verify that also
(45) describes a convex set and hence, for any two points
f(t) = el"WIRT (1) + g) - (36) {hy,h,} € H that satisfy (45), any convex combination
The motion primitives’ feasibility with respect to the thrust h=Mh;+ (1 =MAha, Xe][0,1] (46)

constraint, i.e. - . - .
also satisfies (45). It is therefore sufficient to only validate that

Asf(t) by, Vtel0,T], (37) the eight vertices of the bounding b@x satisfy (45) in order

: : , L - . . to guarantee feasibility with respect to the thrust input.

is determined by first examining if the initial thrust is feasible, A visual interpretation of the thrust input feasibility check
Ang (cs+g) < by, (38) s illustrated in Fig. 2.

and afterwards verifying that the thrust remains feasible duri . .

the entire motion primitive. This is done by computing 39 Angular Velocity Input Feasibility

bounding box on the required mass-normalized thrust, ex-The angular velocity during the execution of the rotational
pressed in the vehicle’s initial body frami@,, and ensuring motion primitive is given in (27) and has to satisfy the
that all points in the bounding box satisfy the thrust constrairg@nstraint

under any rotation with a maximum rotation angle@fax. A
) i ww(t) X b, Vtel0,T]. 47
Let H be the bounding box on the mass-normalized thrust wl(?) 0.7 “47)
rotated into the vehicle’s initial body frame, i.e. First, it is determined whether the initial angular velocity is
3 feasible, i.e.
H= {y eR |hmin = Ryy = hmax}» (39)

AwdS j bwa (48)
where the lower and upper bounklgi, andhmax are computed

such that and then it is verified that the angular velocity remains feasible
. during the entire motion primitive by computing a bounding
hmin < &(t) + 9 = hmax, ¥t € [0,T]. (40) pox on the required rotation vector velocity and ensuring
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Fig. 2: Visual interpretation of the thrust input feasibility check. Fig. 2(a) depicts the mass-normalized thrust traié¢jofyg during the time interval

t € [0, T]. If the initial thrust att = 0 is found to be feasible, then a bounding bixon the required thrust is computed (see Fig. 2(b)). Because the thrust
constraint (13) is expressed in the vehicle’s body frame but the boundingthisxcomputed with respect to the vehicle’s initial body frame, i.e. the attitude
att = 0, it needs to be verified that every poihte H satisfies the thrust constraint when rotated into the vehicle’s body frame for @), 7. If ¥max
denotes the maximum rotation angle of the rotational motion primitive during the int@rvA] relative to the vehicle’s initial attitude, then it can be shown
that any pointy € R3 remains in a closed ball with centéfy and minimal radiugf||y|| under any rotation with a maximum rotation anglegfax. Since

the bounding boxH is convey, it is sufficient to verify that the bounding balls of the eight vertices(dfe in the set of attainable thrusts (see Fig. 2(c)).

Q.

that all points in the bounding box satisfy the constraints equivalently
when mapped to angular velocities under any rotation with

. . A,0,v X b, — pylv||l, VYve. (55)
a maximum rotation angle Qfmax.
Let V describe the bounding box of the rotation vector As for the verification of the thrust feasibility, it is sufficient
velocity, to only verify that all vertices of the bounding bax satisfy
(55) in order to determine feasibility with respect to the
V= {y € R’ | vmin < Yy <Vmax}, (49) angular velocity input since both and (55) are convex sets.

where the lower and upper boumg,i, andvn, are computed

by finding the minimum and maximum of the rotation vecto
Ve|ocity T(t) a|ong each axis on the inter\/@’T}. This The motion primitives' feaS|b|I|ty can be tested at little
involves evaluating*(¢) at the boundaries of the interval and=omputational cost as it only involves verifying the feasibility

P. Discussion

at the root of its derivative (a linear polynomial). of a few distinct points, namely the vertices of the bounding
The constraint (47) can then be rewritten as boxesH andV. Computing these vertices as well as computing
the maximum rotation angle only requires finding the roots of

AW (r(t)v=<b,, YveV, Vtel0,T]. (50) a polynomial of order at most four and can therefore be done

'ln closed-form.

Furthermore, using the same methods as shown above,
the feasibility checks can easily be extended to handle state
constraints or further input constraints of the form

Similar to (42), it is shown in the Appendix C that any poin
y € R3 remains in a ball with centef,y and minimal radius
pullyll under the mapW (r(t))y for any rotation with a
maximum rotation angle 0pmayx, i-€.

Ags(t) < by (56)
W(r(t)y € By pulyl), vtel[0,T], (51) or
where AR(t)s(t) < b, (57)
0p = {11711(@) it wmax_— 0, where s(t) can be any state or control input trajectory (or
%+ Otherwise linear combinations thereof), as computing a bounding box
0, if Ymax =0, (52) on these only involves finding the roots of at most a quartic
Pw =\ 1=cos(¢) otherwise polynomial. The constraints (56) and (57) can be used, for
— ) o e
example, to encode boundaries on the vehicle’s position or
¢ = min|pmax, @], maximum angular velocity expressed in the inertial frame.
where is defined as the rotation angle at which the ball’s DU to the conservative approximations taken in the input
radius is maximized, feasibility tests (45) and (55) by computing, for example,
bounding boxes, the input feasibility tests are sufficient but
% 1= arg max 1- COS(‘P). (53) Not necessary. In particular, applying the input feasibility tests
>0 2 can result in three possible outcomes. The motion primitives
It therefore follows from (51) that a sufficient condition toc@n either be
establish feasibility is « provably infeasible, if either (38) or (48) is false,
« provably feasible, if (45) and (55) hold true for all vertices
Ay 0oy + pollv[|A) 2 by, Vv eV, (54) of the corresponding bounding box,

vA € B(0,1), « or otherwise, their feasibility is indeterminable.



VIlI. TRAJECTORYGENERATION ALGORITHM

This section describes the trajectory generation algorith <
consisting of the previously derived motion primitives an
feasibility checks. First, a translational and rotational motic
primitive on the interval? = [r,72] = [0,7] are planned
from a given initial state to a given final state. Afterwards
the feasibility of the motion primitives, or more precisely o
the corresponding control input trajectorigét) andw(t), is -
tested. If the feasibility tests return that the motion primitive o
are either feasible or infeasible, the algorithm terminatt= 7 [

ISIE]

o

Rotation vector fa.

SE]
.

accordingly. If the feasibility could not be determined, thw?g
time interval is split in half, 2
s 0f
7_% _ 1 + 7—27 (58) g
2 3
]
g 27
7'1:[71,7%}, 7—2:[7'%,’7'2]. 59 < 7T :
If the new interval lengthr, — 7 is below some threshold 0 T/2 T

Tmin, the algorithm terminates without being able to gene Time ()
ate a feasible trajectory. Otherwise, the algorithm is applied

recursively on the subinterval; to generate a trajectory Fig. 3: Attitude and angular_ velocity_trajectories_ obtained by_ applying the
proposed trajectory generation algorithm recursively on the intgfyal’].

from the initial States(ﬁ) to the final States(f%)* where The solid line represents the trajectories computed on the intdfyal§ and
s(t) = (x(t),z(t), R(t)) denotes the state trajectory correfo, T/2], respectively. The dashed line represents the trajectories computed on

; ; imiti i e interval[T'/2, T']. For ease of interpretation, the rotation vector trajectory
sponding to the motion primitives computed on the mterv%ln the intervell’/2,T) is rotated by the attitude at = 7'/2. It can be

7. If the outcome is feasible, then the algorithm is als@en that the trajectories computed on the intef¥l, T/ differ from the
applied recursively on the second subinter¥alto generate corresponding trajectories computed on the entire time interval, despite having

a trajectory from the initial Stat@(’]%) to the final state the same initial and final attitude and angular velocity.
s(72). If the outcome on the intervdl; is also feasible, the

motion primitives (,)f the tW,O intervals are cpncatenated arfﬁerefore needs to be recomputed (see Fig. 3). As a result of
the algorithm terminates with a proven feasible trajectory. e changing attitude trajectories due to bisection, a trajectory

addition_ o the initial state qf the trajectory Gh be.in.g. equal that is feasible but whose feasibility cannot be determined may
to the final state of the trajectory df, also the initial and be rendered infeasible in a subsequent recursion step.
final acceleration and angular velocitiesBnand7; are set to

be equal, in particular t@(71) andw(ry), in order to ensure
smooth transitions on the control inputs when concatenating

the motion primitives. The initial and final acceleration and 'NiS Section attempts to assess the performance of the
angular velocity on the interval” are chosen likewise and proposed trajectory generation algorithm with respect to the

are, for example, set to zero for rest-to-rest maneuvers. design objective of rapidly computing a large set of feasible
Bisecting the time interval on which the trajectories artate-to-state trajectories for a given maneuver duration in real

generated is motivated by the conservative approximation €. If the trajectory generation algorithm finds a trajectory,
the feasibility constraints. If the trajectory is planned on % IS guaranteed to satisfy the system dynamics and input
shorter time interval, the corresponding maximum rotatigiPnstraints. However, if the algorithm is unable to find a
angle will be smaller and the bounding boxes will be tightef‘??s'ble trajectory, it does not imply that no feasible trajectory
hence reducing the conservativeness of the feasibility checR¥iSts, but could be due to

Note that due to the principle of optimality (see for example ¢ the restriction of the trajectories to the motion primitives
[26]), the translational motion primitive only needs to be  of Section V (and concatenations thereof),
computed once, as the optimal position trajectefy), ¢ € 7, « oOr to the conservative approximations of the input con-
is also optimal on the subintervalse 7; and t € T3, re- straints when verifying the feasibility, as the derived
spectively. When verifying the motion primitives’ feasibility, ~ feasibility conditions are only sufficient but not necessary
the fact that the rotational motion primitive is planned from  and therefore may require to perform a bisection step that
r(0) =0 is exploited in order to efficiently compute the  Will render the trajectories infeasible.
maximum rotation angle. However, this requires the nonlinebr order to evaluate the conservativeness of the algorithm and
transformations of the boundary conditions (25) and (32 applicability to real-time applications, its computational
and as a consequence, the principle of optimality cannmists when implemented on a standard laptop computer are
be applied to the rotational motion primitives. The optimgbresented and a comparison with time-optimal trajectories is
attitude trajectory computed on a subinteryal,»] C 7 given. The evaluations are carried out for a minimum time
generally differs from the corresponding attitude trajectorpterval length ofrmi, = 0.01s and for the omni-directional
computed on the entire intervdl, in particular if; # 0, and octorotor vehicle presented in [6], whose thrust is constrained

VIIl. PERFORMANCEEVALUATION
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Fig. 5: The grey area represents the set of horizontal displacements along the

. . . . . ) . z1-axis and end times for which feasible trajectories exist. This set was found

Fig. 4: Comparison of t_he tlme-opnmal maneuver duratlpn re_Iatlve to t computing the time-optimal maneuver numerically (solid line) and hence a

shortest maneuver duration for which the presented algorithm is able to fipfhe ory jonger than this always exists by simply waiting after executing the

a feasible trajectory. The comparison is carried out for 10 000 trajectorife_optimal maneuver, but by definition no shorter trajectory exists (white

starting from rest and steering the vehicle to randomized end states. area). The dashed line indicates the shortest maneuver durations for which
the algorithm was able to generate a feasible trajectory.

to a rhombic dodecahedron with an inradius 1¢f.6m /s>
and whose angular velocity components are constrainedg0 comparison with Time-Optimal Trajectories
lwi| < 3rad/s, i € {1,2,3} (see Appendix A for more de-

tails) Consider the motion primitives of Section V that guide the

vehicle from an initial state to a desired end state in tifné\s
. the maneuver duration is increas&d;— oo, it can be derived
A. Computational Performance from (19) and (30) that the motion primitives’ coefficients

In the following, the average computation time required tg, ¢, d; and d, converge to zero. The vehicle’s required

run the algorithm on a standard laptop computer with an Intgntrol inputsf(¢) andw(t) therefore converge to
Core i7-3840QM CPU running &.8 GHz, with 16 GB of

RAM, is given. The algorithm was compiled with Microsoft Jim f(t) = el" IR (a0 +9), (60)
Visual C++ 14.0 and was run as a single thread application. lim w(t) = wo. (61)
The average computation time was evaluated through gener- T—o0

ating one billion trajectories starting from rest at the origirhe initial acceleratiom, and angular velocitw, are design
to randomized final states with maneuver durations draysarameters that can be chosen arbitrarily. The algorithm is
uniformly at random betweef.25s and10.0s. The vehicle’s therefore guaranteed to find a feasible trajectory for sufficiently
initial attitude was chosen such that its body frame is alignééhg maneuver durations if the multirotor vehicle can generate
with the inertial frame. The final positions and velocitiesufficient thrust in any direction to overcome grawvityas for
were chosen uniformly at random from a box centered at tegample the multirotor vehicles [5], [6]. In order to quantify
origin with side lengths oflom and 10m/s, respectively, the algorithm’s conservatism, the minimum maneuver duration
and the final attitudes where chosen uniformly at randofor which the algorithm can find a feasible trajectory is
from SQ(3). Since the maneuvers were planned from rest, tiempared with the duration of the time-optimal maneuver.
initial acceleration and angular velocity were set to zero. The The time-optimal trajectories are computed using GPOPS-
components of the final acceleration and angular velocity welig29], a numerical optimal control software, and the fastest
chosen uniformly at random betweerb m/s*> and 5m/s®, trajectory found by the proposed algorithm is used as initial
and—1.5rad/s and 1.5 rad /s, respectively. guess for the time-optimal maneuver. Fig. 4 shows the result
The average computation time per trajectory, includingf a comparison for 10 000 maneuvers starting from rest at
verifying its input feasibility, was measured to be94 ps. Of  the origin and with the vehicle’s body frame aligned with the
all computed trajectories, 86.3% were proven to be feasiblgertial frame to final states drawn uniformly at random from
10.9% were found to be infeasible, and the feasibility afe set described in Section VIII-A. On average, the time-
the remaining 2.8% could not be determined. Although thghtimal maneuver duration is 33.8% faster than the shortest
algorithm was implemented on a laptop computer, modefaneuver for which the presented algorithm is able to find a
flight computers such as the Qualcomm Snapdragon Rlighéasible trajectory
have similar specifications and the algorithm could therefore A comparison of the maneuver durations for pure rest-to-
also be run on board at a comparable rate. rest horizontal translations along thg-axis with the initial

The low computational cost of the proposed trajectornd final body frame aligned with the inertial frame is given in
generation algorithm can be exploited to rapidly search over a

large set of end states and maneuver durations that achievé bisection method was used to determine the shortest maneuver duration

. : . which the presented trajectory generation algorithm is able to find a
a certain hlgh level goal’ and to select the trajectory th%l;-\sible trajectory. Computing the shortest maneuver duration using bisection

minimizes some high level cost. took on average less than one millisecond (bisection was terminated when
the bisection interval size was smaller than one millisecond), while GPOPS-
2https://developer.qualcomm.com/hardware/snapdragon-flight Il took between several minutes and an hour to compute a solution.
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Fig. 5. The time-optimal maneuvers are on the order of 20
faster than the fastest feasible trajectories generated by 0.5 N :
proposed algorithm. This is due to limiting the trajectories t \

the motion primitives of Section V, but also to the decouple 0 : \
planning of the motion primitives. An analysis of the time I m A 1
optimal maneuvers revealed that it is beneficial for the vehic =

to rotate in order to accelerate faster and hence reachtheta 0.5} ]
position quicker, even though the initial and final attitude ai__ 05 , , , , : ,
identical. & \

S

2 o

o

IX. EXPERIMENTAL RESULTS s
S 05/

This section presents an experiment to verify the feasibili
of the trajectory generation algorithm for real-time applice 0.5¢
tions that require the evaluation of a large set of possikt
trajectories. The goal is for a fully-actuated multirotor vehicl
to catch a ball thrown by a person in a small pouch. This ta
was chosen because a large number of trajectories exist 1 N

achieve the goal and need to be evaluated in real time, anc ~ —0.5¢ ‘ ‘ ‘ ‘ ‘ L 1
therefore well suited to test the algorithm’s speed and ass 0 0.5 1 1.5 9 2.5 3
its performance experimentally. Horizontal position fn)

The experiments were carried out in the Flying Machine
Arena [20], an indoor aerial vehicle test bed at ETH Zuriclrig. 7: Three candidate catching maneuvers that guide the octorotor vehicle
using the omni-directional octorotor vehicle [6] An overheatijom rest to a state in which the ball is caught in the pouch. The dashed line

. ) . : : ts the predicted ball flight path, and th lis to catch the ball at
motion-capture system provides position and attitude mform%epresens © P ioen pa T Patl, anc fle 908 1S o calh e e 4 d

Sight of zero meters. The maneuver shown in the top plot was found to be
tion of the vehicle and the ball. This information is processenk feasible maneuver with the lowest cost, and the maneuver on the bottom
on a desktop computer that estimates the state of the vehit# found to be infeasible.

and the ball, plans a catching maneuver accordingly and sends

out control commands to the vehicle through a low-latency

radio link at a rate o650 Hz. In order to be able to catch theA. High Level Path Planner

ball, the octorotor vehicle is equipped with a pouch of radius The trajectory generation algorithm is embedded in a high

5.75cm at a distance oft7.5cm from the vehicle’s center
Iﬁyel path planner that performs a brute-force search over a

of mass (see Fig. 6). A table tennis ball, modelled as a pol ¢ of bl ichi d stopoi 4 select
mass with aerodynamic drag proportional to its speed squar g. Of possible calching and Stopping maneuvers and Selects

is used in the experiments. All results shown in the followin € maneuyers with the lowest cost. ) )
are from actual flight experiments. 1) Catching ManeuverAs soon as the ball is thrown into

the air, its catching position and flight duration is predicted
and a catching maneuver is planned using the current vehicle
state as initial condition and with free initial acceleration and
angular velocity (see Appendix B). The catching position is
defined to be the position where the ball crosses a fixed height.
The vehicle’s state at the end of the catching maneuver is
chosen such that the pouch is at the catching position and
that its normal direction points in the opposite direction of the
ball’s velocity. In addition, the ball is caught with the pouch at
rest except for an angular velocity about its normal direction
in order to be less prone to timing errors. A brute-force search
over 1600 end states is performed, in particular over

« 40 final positions, equally spaced around the ball's catch-
ing position,

« and 40 final angular velocities, equally spaced between
+3rad/s and with the vehicle’s velocity and acceleration
set accordingly such that the pouch remains at rest.

Fig. 6: Omni-directional octorotor vehicle equipped with a pouch. The pouéﬁ'g' 7 shows three of the pOSSIb|e 1600 CatChmg maneuvers

is used to catch a thrown ball and thereby demonstrating the algorithrifat are evaluated for an initial prediction of the ball's flight
performance experimentally. path.
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Fig. 8: The left hand side shows a complete catching and stopping maneuver. The dashed line denotes the ball's flight path. After the ball is first detected,
vehicle hasl.368 s time to move the pouch to the catching position starting from rest. Snapshots of the catching maneuver are depicted at the time instan
t = {0s,0.625,0.96s,1.368s,1.82,2.868s}. During the catching maneuver, the octorotor vehicle translat2dm and rotatedr2.2°, and had a final
angular velocity of—2.38 rad/s at the time of catching. The right hand side shows the respective control inputs. Note that the control inputs during the
catching maneuver do not represent a single catching trajectory but are the result of constantly re-planning the catching maneuver at each controller ug
step.

The feasibility of the trajectories is verified with respect teontroller update step, i.e. eve®y) ms, the prediction of the
the vehicle’s input constraints as introduced in Section VIHatching position and the remaining flight duration is refined
and presented in more detail in Appendix A. Furthermore,using the most recent motion capture data. The catching
box constraint on the position using (56) was implemented toaneuver is then re-planned starting from the vehicle’s current
ensure that the vehicle remains within a safe flying space. state by evaluating a maximum of 8000 (4040 x 5) trajec-
From all feasible catching maneuvers for which also taries and the initial control input§ andw corresponding to
stopping maneuver exists, the catching maneuver with ttie feasible catching maneuver with the lowest cost are sent
lowest cost to the vehicle. If no feasible trajectory can be found, then
- - the last found feasible trajectory is tracked using the feedback
Jirans + tJrot (62)  controller presented in [6]. The same feedback controller is

is selected, wherdiyns and Jj,o; are the sums of the transla-2IS0 Used to track the stopping maneuver.

tional and rotational costs (22) and (33) over all concatenated
motion primitives. The design parameterdescribes a trade-
off between translational and rotational costs and is set @ Results

a =10 in the experiments. _ .
2) Stopping ManeuverUsing the final state of the catch- The full catching and stopping maneuver for the same throw

ing maneuver as initial condition, a stopping maneuver shown ir_1 Fig. 7 is depicte_d in Fig. 8. The ball's flight lasted
planned that guides the vehicle to rest with free final positidn368 s, during which the vehicle started from rest and covered
and attitude. The adapted translational and rotational motigndistance of2.25m and rotated72.2° in order to catch
primitive with the final position and attitude being subject t§'€ Pall. The catching maneuver is similar to the maneuver
optimization are given in Appendix B. A brute-force searcRNOWn in the top plot of Fig. 7 for the initial prediction
over five trajectories with a maneuver duration equally spac@f the ball's flight path, but is continuously re-planned as

betweer.5s and1.5s is performed and the feasible stoppind'®V P0se information of the vehicle and the ball become
maneuver with the lowest cost (62) is selected. available. During the catching maneuver, a total of 120 785

trajectories were computed, 110400 catching maneuvers and
10 385 stopping maneuvers.
B. Control Strategy A video showing the vehicle catching the ball is
During the catching maneuver, the output of the high levaltached to the paper and can also be accessed on
path planner is applied as an implicit feedback law. At eadhtps://youtu.be/OgR1ekapOAE
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X. CONCLUSION this paper as an example fully-actuated multirotor vehicle to

This paper presented and analyzed a computationally gyaluate the performance of the trajectory generation algorithm
ficient method for the rapid generation and feasibility ver@s Well as for the experimental results.
fication of trajectories that guide a fully-actuated multirotor The octorotor vehicle uses reversible fixed-pitch rotors that
vehicle from any initial to any desired end state in a given timgan produce both positive and negative thrust. Each single
The algorithm is based on recursively generating state-to-stEQ0r thrust is subject to the saturation limits
motion primi_tives a_nd subse.quentlyl verifyin.g. their feasibilit)_/. ~ fmax < frot < fmax (63)
Computationally inexpensive motion primitives for the vehi-
cle’s position and attitude were derived that are characterizédhe aerodynamic interference between rotors is neglected,
by polynomials in time. This allowed for efficiently comput-the collective thrustf and torquet produced by the eight
ing bounds on the vehicle’s acceleration, rotation angle af@fors can be written as

rotation vector velocity, which were then used to verify the Frot1

motion primitives’ feasibility. A trajectory generation algo- H _ [ n ns : (64)
rithm based on the derived motion primitives and feasibility |t P1 XM+ kKN ... Ps X Mg+ KNS e

tests was introduced. If the feasibility of a motion primitive —B frots

cannot be d_etermined QUe to the conse_\rvative approximatiowmerefmu is the thrust magnitude generated by tHé rotor,
the constraints, the trajectory generation algorithm is apphgpi is the rotor disk normalp, is the rotor position relative
recursively on subintervals and the resulting motion primitivgg the vehicle’s center of mass amdis the rotor's specific

are concatenated. thrust-to-drag ratio. The exact numerical values of the rotor

The algorithm's computational efficiency and speed is dygnfiguration can be found in [6]. The set of attainable thrusts
to the restriction of the trajectories to certain motion primitivegng torques can be written as

for which closed-form solutions exist and due to the conser- . .
vative approximation of the input constraints when testing the {Bfrot € R” | frot € R%, || frotlloo < frmax}- (65)

feasibility. However, this comes at the expense of not alwa)ﬁ)plying the method presented in [30], the set of attainable

being able to find a feasible trajectory for a given initial anﬂwusts and torques (65) can be described by a polyhedron of
final state and maneuver duration although a feasible traject form

exists. In order to characterize its performance and assess Its
conservativeness, the trajectories generated by the algorithm [Af AT] [ﬂ <b. (66)
were compared with time-optimal maneuvers.

The feasibility of the algorithm for real-time applicationsA slice through this polyhedron dt= 0 then yields the set
that require the evaluation of large numbers of trajectories waattainable thrusts when producing zero torque
verified experimentally by catching a ball thrown by a person ~ -
with a small pouch attached to an omni-directional octorotor Arf 20, (67)

vehicle. For this purpose, the algorithm was embedded inafid can be further simplified by removing all redundant

high level path planner that performed a brute-force seargfequalities, resulting in the rhombic dodecahedron
over a large number of candidate trajectories and selected

the maneuver with the lowest cost. In order to cope with Asf 2 by, (68)
disturbances and changing final states, the trajectory planniggn
was repeated at each controller update step with the vehicle’s

current state as initial condition, and the output trajectory was _f ? \95
then applied as an implicit feedback law. -1 1 —2

While the presented method allows for generating state- -1 -1 V2
to-state trajectories for any fully-actuated multirotor vehicle, 1 _01 :; _5/5 cos (%) —sin(J5) 0
it is only guaranteed to find a feasible trajectory for an Ay =51 2 o [Sin(ﬁ) cos ({3 0], (69)
infinitely large maneuver duration if the vehicle is able to 11 V2 0 !
hover at any attitude. This is due to the decoupled planning of I
the translational and rotational motion primitives which does 11 V2

. : . S 1 -1 —V2

not take the input constraints into account. Considering the 2 0 o0

could be to embed the trajectory generation algorithm in a
high level path planner such as a rapidly exploring random
tree algorithm in order to to explore different attitude pathBhe set of attainable thrusts (68) for a mass-normalized

algorithm’s speed, one approach to overcome this limitation 3
bf == fmax‘/ ?1. (70)

and find feasible trajectories. maximum rotor thrust offmax = 6 m/s? is illustrated in Fig.
9.
APPENDIXA Rotating the octorotor vehicle while maintaining a thrust
OCTOROTORVEHICLE INPUT CONSTRAINTS in the same inertial direction typically requires some rotors

This appendix presents the input constraints of the omngé change their spinning direction. However, reversing the
directional octorotor vehicle presented in [6] that is used spinning direction of too many motors in rapid succession
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The optimal jerka(t) minimizing (74) can be computed for
each axis individually as the total cost is simply the sum of
the costs along each axis,

3 3 T
1
20 Jirans = Z Jtransi = Z T /o z?(t)dt. (75)
=1 =1

10 In the following, the solution along thex;-direction,
& i €{1,2,3}, is derived. For the sake of readability, the
R subscripti is omitted in the following and, for example,

= the scalarz denotesz;, i.e. thei-th component ofz. Let

-l s = (s1,82,53) = (z,4,%) be the state and, = 7 be the

20 input. The Hamiltonian is then defined by
1
H(s,u,\) = TUQ + A152 4 Aas3 + Asu, (76)
20 where\ are the adjoint variables that must satisfy
20
0 .
4 _10 0 10 A= _VsH(S7 U, A) = (07 _)‘la _AQ) . (77)
ﬁ?z/ 90 —10 7_\ .. . . . .
2 —920 : @.e The result of the adjoint differential equation is
A
1
/\1(t) = —TQCl’ (78)
Fig. 9: Rhombic dodecahedron with an inradius16f6 m/s2 describing the )\2(15) = l(cht + 202), (79)
set of attainable thrusts for the octorotor vehicle presented in [6]. T
1
As(t) = T(—clt2 — 2¢ot — 2¢3). (80)

can cause instabilities. Experiments revealed that the low-ord#fe optimal control:* that minimizes the cost function is
dynamic model with angular velocity as the control inpugbtained by
approximates well the true system dynamics for an angular

velocity of up towmax = 3rad/s per axis. The angular velocity u*(t) = arg min H(s,u, A), (81)
of the vehicle is thus constraint to the box _ %tQ + oot + 3, (82)
Aow = b, (71)  with the corresponding optimal state trajectories
with sit) = St + 21+ 260+ L2 + et +cs,  (83)
1 0 0 s5(t) = St + 285 + S4% + eqt + o5, (84)
PR s5(t) = G0+ G+ st +en. (85)
Ay = 0o -1 o’ (72) Altho.u.gh Pontryagin's_ minimum principle is only a necessary
0o 0 1 condition for optimality, it can be shown that* indeed
0 0 -1 minimizes (74) by exploiting the fact that the state dynamics
b — el (73) are linear and the cost is convex [31].
@ et If the initial and final state are fully defined, i.e.
s(0) = (po,vo,a0) and s(T) = (pr,vr,ar), the coefficients
c1,...,c¢ can be determined by evaluating the optimal state
APPENDIX B

trajectorys*(t) at timet = 0,
DERIVATION OF MOTION PRIMITIVES

C. Q,
This appendix presents the derivations of the translational Ci _ vs (86)
and rotational motion primitive introduced in Section V. The co Do ’
motion primitives’ trajectories are computed using Pontrya- )
gin’s minimum principle and solutions are provided for th&nd at timet =T',
different initial and final conditions used in this paper. c1 1 [ 720 —360T 6072 Ap
C2| =5 | 3607 16872  —2473| |Av|, (87)
: , i 6072  —2473  3T* A
A. Translational Motion Primitive s - %
) . - N wher
We seek to find the motion primitive that minimizes the cost ere L )
. Ap pr —po — vl — a1
1 Av| = v — vy — agT (88)
Jtrans = T/o ||a}(t)H2dt. (74) Aa ar — ag
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By combining the optimal state trajectories (83)-(85) of eacthe optimal control input:* that minimizes the cost function
axis, the translational motion primitive’s position, velocity anés obtained by
acceleration trajectory (16)-(18) are obtained.

If a component of the initial or final state is left free and
subject to optimization, then its corresponding adjoint variable =dit + do, (100)

must be equal to zero at time= 0 or t = T, respectively. . ; . ; .
) . - 7* with the corresponding optimal state trajectories
The solutions for the different boundary conditions used in this P gop J

u*(t) = argmin H (s, u, ), (99)

paper are given in the following. In any case, the trajectories si(t) = Lt® + L4 4 dat + dy, (101)
(16)-(18) and cost (22) as introduced in Section V-A remain sy(t) = %ﬂ + dot + ds. (102)
valid.

Since the system dynamics are linear and the cost is convex, it

State-To-State with Free Initial Acceleration: X > Ve
can be shown, analogous to the translational motion primitive,

c3 0 that the control inputs* indeed minimizes the cost (94).
cs| = |vo, (89) Let R, and Ry be the initial and final attitude and let
| C6 | Do wo and wr denote the initial and final angular velocity,
(1] 1 960  —6007 120727 [Ap respectively. As explained in Section V-B, the motion primitive
c2| = 57 | —360T 21672 —3673| |Av|, (90) is always planned from an attitude 8f0) = 0 to an attitude
4 | 3T 2073 _8T4 5 Aa of »(T) = r., wherer, is the rotation betweei®, and R,
where [re] := log(R§ Rr), (103)
Ap o — po — voT and aftgrwards ro_ta_tgd bR, tq satisfy the original att_|tude
_ _ constraints. The initial and final states are then given by
Av| = v — Vg . (92) - o .
Aa ar s(0) = (0,wp) and s(T") = (r.,wr), Wherewr is defined
to be
State-To-Restv = a7 = 0) with Free Final Position: Gr = W (ro)wr. (104)
€6 Po The coefficientsd, ...,d, can be determined by evaluating
G|l = Y] 92)  the optimal state trajectory*(¢) at timet = 0,
C4 Qg
i - d3 wWo
o 0 0 [ ] - { } 7 (105)
1
| == | 12 —67 {“O + aoT] . (93) daf 10
e T 6T 272 ao and at timet = T,

dy 1 [-12 6T re — woT

|:d2:| - ﬁ |:6T —2T2:| |:LIJT — wo] ’ (106)
Because the motion primitive is always planned from an initial
titude ofr(0) = 0, the coefficientl, is always zero and will
1 [T be omitted in the remainder of this section. Finally, combining
Jrot = T/ 14 (t)[|*dt. (94) the optimal state trajectories (101) and (102) along each axis

0 and inserting it into (3) and (9) yields the rotational motion

As with the translational motion primitive, the optimal rotatiorprimitive’s attitude and angular velocity trajectory (26) and
vector acceleratiotif(¢) minimizing (94) can be computed for (27).
each axis separately and is derived in the following for the Analogous to the translational motion primitive, if any
r;-coordinate € {1,2,3}. Again, for the sake of readability, component of the initial or final state is subject to optimization,
the subscript is omitted in the following. Lets = (r,7) be the coefficientsl;, d, andds; can be determined by evaluating
the state and: = 7 be the input. The Hamiltonian is thenthe adapted boundary conditions of the motion primitive, and

B. Rotational Motion Primitive

We seek to find the motion primitive that minimizes the co

defined by is done in the following for the different boundary conditions
1 used in this paper. In any case, the trajectories (26) and (27)
H(s,u,\) = —u? + A\1s2 + \ou, (95) and cost (33) as introduced in Section V-B remain valid.
T State-To-State with Free Initial Angular Velocity:
where the adjoint variablex must satisfy dy =0, (107)
A= —V.H(s,u,A) = (0,—\;). (96) di] 1 [—6 6T][r (108)
o . . ds| — 213 [31% —T°| |or]”
The result of the adjoint differential equation is State-To-Resti — 0) with Free Final Attitude:
M) = 72, (©7) ds = wo, (109)

Ao(t) = %(—2d1t —2dy). (98) {Zj = [_go] : (110)



APPENDIXC
DERIVATION OF MINIMUM -VOLUME BOUNDING BALLS N

\
In this appendix, the minimum-volume bounding balls on A NPyl
a rotation and angular velocity map for a given maximum
rotation angle are derived. The findings are used to approx- . .2
imate the thrust and angular velocity constraints during the e 2
verification of the motion primitives’ feasibility in Section VI. P ~Y

A. Bounding Ball on Rotation

Consider a vectory € R? and lety’ be the result of
rotatingy about any rotation axis € S? by a rotation angle

» € [0, omay, 1.€.
(111)
(112)

y = elmly,
= (I +sinp[n] + (1 — cosp) [n]*) y.

Fig. 10: lllustration of the minimum-volume bounding ball on a rotation with

Claim: B(dsy, pfllyll) is the minimum-volume bounding a maximum rotation angle abmax. For the sake of simplicity, only the two-

ball enclosing ally’, with

dimensional case is considered with the rotation axipointing along the
ys-axis. Any pointy that is rotated about the origi® by at most an angle of

5f = cos @, pmax lies on the circular arc segment with radifig|| and subtending angle
L 2¢max- The minimum-volume bounding ball enclosing the entire circular arc
pPf =sSmey, (113) segment is centered afy and has a radius of lengiy | y||.

- . 71'
@ = min {@max» 5} .

Proof: Note that independent of the rotation axis, the tw8nd the ball therefore encloses gll. Note that (119) holds
terms[n]y and[n]2y in (112) are perpendicular to each otheith equality for any rotation axis perpendicular goand a
For an ang|ea c [07 71—] betweenn and Y, the latter term rotation angle Ot& = ©max- Therefore, the ball has the minimal
can be expressed by a component parallel and a compori@giius for the given center. Furthermore, in that case, the ball’s

perpendicular tay, respectively,

radius has the same length as the middle term of (112) that is
perpendicular tay and any change of the ball's center would

[n)*y = (nn” — 1)y, (114)  therefore require increasing the ball's radius. Hence, the ball
= cos(a)||y|ln — vy, (115) described by (113) is the minimum-volume bounding ball.
= cos(@) |ly|| (cos()n +sin(a)ni) —y, (116) If omax= 3, the. pounding ball has a radius p§|| and .is
_ sin(a)2||y||n” +sin(a) cos(a)|[yln., (117) centered at the_or|g|r!. Therefo_re, it also encloses all pajhts
’ under any rotation with a rotation angle larger tian W
where A visual interpretation of the minimum-volume bounding
Yy q n — n cos(a) ball for a rotation with a rotation angle smaller thagy is
n) = Tl andn, = [In = ny cos(@)] (118)  shown in Fig. 10.

Furthermore, it holds thdt[n|y|| = sin(«@)||y||-

First only rotations with a maximum rotation angle oB. Bounding Ball on Angular Velocity Map

emax € [0,%], are analyzed. In this case, the maximum
distance of anyy’ from the ball's center is equal or smalle

than the ball's radius,

[ (I + sin(p)[n] + (1 — cos(¢)) [n]?) ¥ — cos(pma)y]|”
= /(1 — cos(ma)y + (1 — cos(p))[n]2y + sin(y) [n]y]|
= (1~ cos(iomax)) — (1 — cos(i)) sin(a)?)” ||y
+ (1 = cos(i)) sin() cos(a))? [|y[|* + (sin() sin(a))? ||yl
= (1 — cos(ypmax)? [|yl?
— 2(1 — cos(pma) (1 — cos()) sin()? y|>

Let y € R? be any rotation vector velocity and defimé

'to be the outcome of mapping to angular velocities under

any rotation with rotation axis: € S? and a rotation angle
© €10, Ymay, i-€.
y' = W(pen)y, (120)

_ (1 B ek 8 P S““P[n]?) y.  (121)
12 ¥

Claim: B(d,¥, p|lyl|) is the minimum-volume bounding
ball enclosing ally’ with

+ (1 — cos())? sin(a)? (sin(a)2 + cos(a)2) llylI? (119) .
+sin2(g0) sin(a)2||yH2 6 _ {1, (~) |f Pmax = 07
w sin(@ .
— (1 — cos(pman))? [y ]1® + 2 cos(ioma) (1 — cos(9)) sin(a)? ||y —% » Otherwise

< (1 = cos(pmax))? + 2 cos(pmax) (1 — cos(¢)))lylI?
< ((1 — COS(‘,Dmax))2 + 2COS(SOmax)(l - COS(QOmaX))) ||y||2
< sin(emax)?[lyl1?,

o it pmax = 0, (122)
Puw = 1—%@ otherwise

o= min[@maXa @] )
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where is defined the to be the rotation angle at which thgs]
ball radius is maximized,

1 — cos(y)
—

Proof: Equation (121) is of the same form as (112) anﬁ[e
therefore the proof follows the same argumentation as for t ]
minimum-volume bounding ball on rotations.

First, it can easily be verified that (122) is the minimum-[€]
volume bounding ball forpmax = 0. Next, rotations with a
maximum rotation angle opmax € (0,%] are considered. As [g]
in (119), it can be shown that the maximum distancg’dfom
the ball's center is equal or smaller than the ball’s radius, i'ﬁb]

H( 1fcos<p)[n}+

P := arg max

max (123)

(6]

o — sin(p) W) . LIC) yH
® Pmax (124) [11]

1 — cos(pmax) > 2 2
- y 9
( L ™

and that the ball therefore enclosesigll Equation (124) holds
with equality for any rotation axis perpendicular goand a
rotation angle ofp = pmax. Following the same argumentatlon[ 3]
as for the bounding ball on rotations, any change of the ball's
center would require to increase the ball's radius and heri¢él
the ball described by (122) is the minimum-volume bounding
ball under any rotation with a maximum rotation angle o[f15]
Pmax = P.

Furthermore, again closely following the proof in (119), it
can also be shown that [16]

=

(2= 2=,
(‘T(“’)) lyll?

holds for anyy > 0, which implies that ally’ under rotations
with a rotation angle> > % are enclosed by the bounding ball18]
for a maximum angle ofmax = @. |

<

(12]

2

cos(w[ " _sin@)

(125)
<

(17]
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