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Abstract—This paper presents an attitude tracking control law
and control allocation strategy for quadrocopters that prioritizes
the vehicle’s ability to achieve a desired translational acceleration.
The quadrocopter’s attitude error is split into a reduced attitude
error, which describes the misalignment of the thrust direction,
and a yaw error, which describes the orientation error about the
thrust direction. A model-based proportional-derivative control
law is derived, where the proportional action is in terms of
the reduced attitude and yaw error and the derivative action
is in terms of the quadrocopter’s angular velocity error. Almost
global asymptotic convergence of the reduced attitude error is
established and convergence of the yaw error is proven. It is
further shown that the attitude control law decouples the reduced
attitude error dynamics from the yaw error dynamics. A control
allocation strategy is derived that exploits the decoupling in order
to prioritize the correction of the reduced attitude over the yaw
error. The proposed control strategy is computationally light-
weight and therefore well-suited to run on board quadrocopters
at high rates. Experimental results demonstrate improved error
recovery and position tracking performance.

Index Terms—Aerial robotics, attitude control, control alloca-
tion, nonlinear control, quadrocopter.

I. INTRODUCTION

QUADROCOPTERS have gained in popularity over the
past decade due to their exceptional mobility and me-

chanical simplicity, and numerous strategies for their con-
trol have been developed, for example [1]–[6]. Driven by
the increasing use of quadrocopters for various applications,
such as aerial inspection, package delivery or entertainment,
quadrocopters are expected to encounter and recover from an
increasingly large set of potential disturbances and perform
increasingly aggressive flight maneuvers. However, today’s
state-of-the-art quadrocopter control strategies often struggle
with recovering from large position and attitude errors or
with tracking aggressive maneuvers, where the quadrocopter
is close to its physical limits.

A. Motivation

Quadrocopters are inherently under-actuated and can only
generate a thrust in a single direction perpendicular to their
rotor disks. As a result, their position and attitude dynamics
are coupled and only their position and yaw orientation, i.e.
the rotation about their thrust direction, can be independently
controlled. Due to the coupled position and attitude dynamics,
quadrocopter control strategies are often based on a cascaded
control scheme as shown in Fig. 1, consisting of an outer
position control loop, an inner attitude control loop and a
control allocation algorithm: The position controller computes
the thrust vector required to track the desired maneuver, the
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attitude controller computes the necessary torques to rotate
the quadrocopter such that the desired thrust can be achieved,
i.e. such that the rotor disks are aligned perpendicular to the
desired thrust direction, and lastly the control allocation algo-
rithm coordinates the four rotors such that they generate the
desired thrust and body torques. The employed attitude control
and control allocation algorithm therefore play important roles
in a quadrocopter’s control strategy. A desired maneuver can
only be tracked accurately if the quadrocopter is oriented
correctly and the rotors generate the desired thrust and body
torques. When tracking aggressive maneuvers or recovering
from large errors, the desired thrust and body torques can
often not be met due to saturation limits of the individual
rotor thrusts. If these saturation constraints are not properly
considered in the control allocation, the performance of the
overall control strategy may be significantly degraded or the
system may even become unstable. A naive solution to ensure
feasible rotor thrust commands is to clip the rotor thrusts
corresponding to the desired collective thrust and body torques
at their saturation limits. However, by clipping the rotor thrusts
neither the desired collective thrust nor the desired body
torques are produced exactly, and their different importance
for the quadrocopter’s stability and trajectory tracking perfor-
mance is neglected. For example, a quadrocopter’s position
dynamics are invariant to its yaw orientation, rendering the
yaw torque used to control its yaw orientation less important
than its collective thrust.

This paper therefore addresses the attitude control and
control allocation problem with the objective of prioritizing
the alignment of the quadrocopter’s thrust direction in order to
improve its trajectory tracking and error recovery performance.
It is assumed that a position controller exists that provides a
desired collective thrust and attitude.

B. Related Work

The attitude control problem for rigid bodies has been
thoroughly investigated since the 1950s (see for example [7]
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Fig. 1: A typical cascaded control scheme consisting of an
outer position control loop and an inner attitude control loop.
The position controller computes a desired thrust and attitude.
The desired attitude is fed into an attitude controller that
computes the required body torques, which are together with
the desired collective thrust mapped to individual rotor thrusts.
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and [8], and references therein) and can be divided into two
categories: the full attitude control problem and the reduced
attitude control problem. The objective of the former is to align
a body-fixed coordinate frame with a reference frame whereas
the objective of the latter is solely to point a body-fixed vector
in a specified direction in a reference frame (and rotations
about the specified direction are irrelevant). Since the position
dynamics of a quadrocopter are fully determined by its thrust,
which is constrained to a single direction with respect to the
quadrocopter, an attitude controller that solves the reduced atti-
tude control problem would be sufficient to control its position.
Nonetheless, many applications also demand for controlling a
quadrocopter’s yaw orientation, for example inspection, where
data about the environment is typically gathered using a
directional sensor. For this reason, various full attitude control
techniques have been developed for the attitude stabilization
and tracking control of quadrocopters, including a classical
proportional-integral-derivative (PID) control approach assum-
ing simplified dynamics [9], nonlinear proportional-derivative
(PD) controllers based on rotation matrices [6], [10], unit
quaternions [11], [12] or rotation vectors [13], [14], back-
stepping and sliding-mode techniques [15]–[18] as well as
optimal control methods such as linear quadratic regulators
[9], [19] or model predictive control [20].

The problem of control allocation is often discussed in
the context of over-actuated systems where there are more
actuators than strictly needed to meet the desired motion
control objectives [21]. However, control allocation is also
important for under-actuated systems such as quadrocopters in
case of rotor failure [22], [23] or when the desired collective
thrust and body torques require rotor thrusts that are beyond
the rotors’ physical limits. In the latter case, if no feasible rotor
thrusts exist that generate the desired collective thrust and body
torques, the control allocation algorithm has to degrade its
performance and search for feasible rotor thrusts that minimize
the control allocation error. In [24], two strategies to avoid
rotor thrust saturations are analyzed; one based on a weighted
least squares solution and another based on projecting the
desired collective thrust and body torques onto their feasible
set while maintaining their direction. In [25], a control alloca-
tion strategy is proposed that subsequently constrains the rotor
thrusts that violate the saturation limits while prioritizing the
roll and pitch torques over the commanded collective thrust
and yaw torque.

The design of an attitude control law and control allocation
algorithm is often done independent of each other, although
the control allocation can significantly affect a quadrocopter’s
behaviour and even destabilize it [21]. This can be overcome
by a model predictive controller as proposed in [20] that
handles the rotor thrust constraints directly in the attitude
control algorithm. However, model predictive controllers are
computationally expensive and can typically not be run at
sufficiently high rates on the low-cost microcontrollers usually
found on quadrocopters.

C. Contribution
This paper presents an attitude tracking control law and

control allocation strategy for quadrocopters that seamlessly

switches between full attitude and reduced attitude control, i.e.
only controlling the direction of thrust. The main contribution
of this paper is the design of an attitude tracking control law
that decouples the alignment of the vehicle’s thrust direction
from the yaw orientation, and a control allocation strategy
that exploits the decoupling in order to increase the control
performance when the available control authority becomes
scarce.

A quaternion-based PD control law is derived, where the
proportional action is in terms of the reduced attitude and yaw
error and the derivative action is in terms of the quadrocopter’s
angular velocity error. Almost global asymptotic stability of
the reduced attitude error is formally established and conver-
gence of the yaw error is shown. By splitting the attitude
error into a reduced attitude error and a yaw error, the
quadrocopter’s thrust direction is steered along the shortest
angular path towards the desired thrust direction and as a
consequence the reduced attitude error typically converges
faster and causes less position error than with a conventional
controller based directly on the full attitude error. Furthermore,
the proposed control law decouples the reduced attitude error
dynamics from the yaw error dynamics; the reduced attitude
error dynamics are independent of the yaw error, yaw angular
velocity and yaw torque.

A control allocation strategy is developed for the case when
the desired collective thrust and torques cannot be met due to
saturation limits of the rotors. The control allocation strategy
prioritizes the roll and pitch torque that are required to rotate
the quadrocopter’s thrust direction into the desired direction
over achieving the desired collective thrust and yaw torque.
Because the derived attitude control law renders the reduced
attitude dynamics independent of the applied yaw torque, the
yaw torque can be constrained if the desired collective thrust
and torques are not attainable without affecting the stability
or convergence of the reduced attitude error dynamics and
equivalently the position dynamics. Instead of wasting the
available rotor thrust to generate a yaw torque that is not
crucial for the quadrocopter’s stability and position trajectory
tracking performance, more control effort can be spent on
achieving the desired roll and pitch torques and collective
thrust.

The derived attitude tracking control law and control allo-
cation strategy are both computationally light-weight and are
thus well-suited to run at high rates on board a quadrocopter
where computational resources are limited. The performance
of the proposed control strategy is evaluated experimentally
and a comparison with a conventional control strategy is pro-
vided. The proposed control strategy demonstrates enhanced
position tracking performance for aggressive maneuvers and
increased robustness when recovering from large errors, but at
the expense of a slower yaw error response.

D. Outline

The remainder of this paper is structured as follows: Section
II introduces the attitude representation used throughout this
paper. A model of the quadrocopter dynamics is then presented
Section III. An attitude tracking control law is proposed in
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Section IV and its stability is discussed subsequently. Section
V presents a strategy for allocating the rotor thrusts to meet the
desired collective thrust and body torques. An experimental
evaluation of the attitude tracking control law and control
allocation strategy is given in Section VI, and conclusions are
drawn in Section VII.

II. ATTITUDE REPRESENTATION

A survey of different attitude representations and their
consequences for attitude control is presented in [8]. In this
paper, the attitude is parametrized using unit quaternions as
they use the least number of parameters (four) to represent the
attitude globally in a singularity-free way. In the following, the
most important properties of unit quaternions are introduced,
and a more extensive list can be found in [26].

Let two coordinate systems F1 and F2 be separated by a
rotation about a unit vector n ∈ S2 by angle ϕ ∈ R, where
S2 denotes the two-sphere S2 = {n ∈ R3 | nTn = 1}.
The attitude of F2 relative to F1 can then be described by
a unit quaternion q, consisting of a scalar q0 and a vector
q̃ = (q1, q2, q3), and is defined as

q =

[
q0
q̃

]
=

[
cos
(
ϕ
2

)
n sin

(
ϕ
2

)] . (1)

Consequently, the inverse quaternion representing the atti-
tude of F1 relative to F2 is given by q−1 = (q0,−q̃).
In addition, it is apparent from (1) that q ∈ S3, where
S3 = {q ∈ R4 | qTq = 1}.

Let qF1
and qF2

describe the attitudes of F1 and F2 with
respect to a common coordinate frame and let q represent the
attitude of F2 with respect to F1, then it holds that

qF2
= q ⊗ qF1

, (2)

=

[
q0 −q̃T
q̃ q0I − [q̃]×

]
qF1 , (3)

where ⊗ denotes the quaternion multiplication operator,
I ∈ R3×3 is the identity matrix and [q̃]× is the skew-
symmetric cross product matrix representation of q̃,

[q̃]× =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 . (4)

The identity element of quaternion multiplication is given by
qI = (1, 0, 0, 0), i.e. a rotation with zero rotation angle, in
which case q ⊗ qI = qI ⊗ q = q.

The rotation matrix R (q) ∈ SO(3) corresponding to the
rotation embodied by q, i.e. the rotation from F1 to F2, is
computed as

R (q) =
(
q20 − q̃Tq̃

)
I + 2

(
q̃q̃T − q0[q̃]×

)
. (5)

It is important to note that the space of unit quaternions S3
double covers the space of physical attitudes SO(3) and each
pair of antipodal unit quaternions ±q ∈ S3 represents the same
physical attitude. This implies that an attitude controller needs
to stabilize a disconnected set of equilibrium points in S3 in
order to avoid the unwinding phenomena [27], i.e. that the
body to be controlled unnecessarily performs a rotation with
a rotation angle larger than 180◦ to reach the desired attitude.
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Fig. 2: Illustration of a quadrocopter with a body-fixed coordi-
nate frame B and an inertial coordinate frame I. The control
inputs to the quadrocopter are the four rotor thrusts ui that act
along the quadrocopter’s z-axis.

III. SYSTEM DYNAMICS

This section presents the position and attitude dynamics of
a quadrocopter with its rotors arranged as shown in Fig. 2.
The quadrocopter is modelled as a rigid body with its position
p = (px, py, pz) measured in an inertial coordinate frame I
and with its attitude parameterized by a unit quaternion q that
represents the rotation from the inertial coordinate frame I to
a body-fixed coordinate frame B.

A. Control Inputs

The control inputs to the quadrocopter are the four rotor
thrusts u = (u1, u2, u3, u4) as illustrated in Fig. 2.

The rotor thrusts are proportional to the rotors’ angular
velocities squared [28], which are tracked by high-bandwidth
controllers on board the vehicle. Experimental results have
shown very fast response times of the rotors to set point
changes in the desired angular velocities (on the order of
15 ms). It is therefore assumed that the angular velocities
of the rotors and equivalently the rotor thrusts can be set
instantaneously, and that the rotor dynamics can be ignored.

The rotor thrusts are assumed to be subject to saturations.
Each rotor thrust is limited by a minimum and maximum
thrust,

0 < umin ≤ ui ≤ umax, (6)

where the lower limit is motivated by the minimum angular
velocity of the rotor required for its controller to function
properly [29] and the upper limit can be due to the maximum
available voltage that can be applied to the rotor or the rotor’s
heat dissipation capacity. The set of feasible control inputs U
can therefore be expressed as

U = {u ∈ R4 | umin1 � u � umax1}, (7)

where � denotes componentwise inequality and 1 is a vector
of ones.

The four rotor thrusts ui collectively generate a thrust f
along the vehicle’s z-axis and body torques τ = (τx, τy, τz)
about the vehicle’s body-fixed coordinate axes. Typically, a
quadrocopter’s position and attitude controller are designed
with the collective thrust f and torques τ as inputs instead of
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the rotor thrusts u. Hence, a virtual control input v is defined
to be v := (f, τ ). The relationship between the actual control
inputs u and the virtual control inputs v is described by

v = Bu, (8)

where

B =


1 1 1 1
0 l 0 −l
−l 0 l 0
κ −κ κ −κ

 , (9)

l denotes the quadrocopter’s arm length and κ is the rotor
specific thrust-to-drag ratio.

B. Equations of Motion

If aerodynamic effects such as drag on the quadrocopter’s
fuselage are neglected, then the position dynamics are deter-
mined by the orientation of the quadrocopter’s z-axis and the
total thrust generated by the four rotors:

mp̈ = R (q)
−1

0
0
f

−mg, (10)

where m denotes the quadrocopter’s mass and g is the acceler-
ation due to gravity. The attitude dynamics of the quadrocopter
in quaternion space are given by [26]

q̇ =
1

2

[
−q̃T

q0I + [q̃]×

]
ω, (11)

Jω̇ = Jω × ω + τ , (12)

where ω = (ωx, ωy, ωz) denotes the quadrocopter’s angular
velocity and J ∈ R3×3 is the rotational inertia matrix, both
expressed in the body-fixed frame B. Without loss of general-
ity, it is assumed that the principle axes of inertia coincide with
the coordinate frame B such that J = diag (Jxx, Jyy, Jzz) and
that the moments of inertia about the roll- and pitch-axis are
equal, i.e. Jxx = Jyy.

IV. ATTITUDE CONTROL

In this section, a control law for tracking a desired attitude
trajectory qd(t) with corresponding angular velocity ωd(t)
and angular acceleration ω̇d(t) is presented. First, the errors
associated with tracking the desired attitude trajectory are
defined and then a control law based on the body torques
τ is designed.

A. Attitude Tracking Errors

For a given desired attitude qd and current attitude q, the
attitude error is defined as the rotation from the current attitude
to the desired one,

qe = qd ⊗ q−1. (13)

In the remainder of this paper it will be assumed that the
components of the quaternion error are qe = (q0, q1, q2, q3).
The angular velocity error is defined as the difference between
the desired and current angular velocity,

ωe = ω̄d − ω, (14)

where ωe is expressed in the body-fixed coordinate frame B
and consequently ω̄d is the desired angular velocity expressed
in the body-fixed frame B, i.e. ω̄d = R(qe)

−1ωd. The
dynamics of the attitude and angular velocity error can be
computed by taking their time derivative and using (11) and
(12):

q̇e =
1

2

[
−q̃Te

q0I − [q̃e]×

]
ωe, (15)

Jω̇e = J ˙̄ωd − (Jω × ω + τ ) , (16)

with ˙̄ωd = ωe × ω̄d +R(qe)
−1ω̇d.

As the objective is to design a control law capable of
prioritizing the alignment of the vehicle’s thrust direction over
correcting its yaw orientation, two further attitude errors are
defined: a reduced attitude error qe,red and a yaw error qe,yaw.
The reduced attitude error is a measure of the misalignment of
the quadrocopter’s thrust direction and is defined as the short-
est rotation that aligns the quadrocopter’s current direction of
thrust with the desired one, i.e.

R (qe) e
B
z = R (qe,red) eBz , (17)

where eBz is the quadrocopter’s z-axis expressed in its body
frame B, i.e. eBz = (0, 0, 1). Evaluating (17) and using that the
last component of qe,red needs to be zero in order for qe,red
to be the shortest rotation, the reduced attitude error can be
computed to be

qe,red =
1√

q20 + q23


q20 + q23

q0q1 − q2q3
q0q2 + q1q3

0

 . (18)

It directly follows from (18) that the reduced attitude error is
zero, i.e. qe,red = qI , if q20 +q23 = 1. Note that if the desired z-
axis points in opposite direction of the quadrocopter’s current
z-axis, i.e. if q20 + q23 = 0, then qe,red is not well-defined since
any rotation with a rotation angle of 180◦ about any axis in
the body-fixed xy-plane would align the z-axis correctly with
minimal rotation angle.

The yaw error is defined as the subsequent rotation required
such that also the direction of the vehicle’s x- and y-axes are
aligned with the desired coordinate frame, i.e. such that

qe = qe,yaw ⊗ qe,red. (19)

Solving (19) for the yaw error yields

qe,yaw =
1√

q20 + q23


q0
0
0
q3

 . (20)

A visualization of the reduced attitude error and yaw error
is shown in Fig. 3.

B. Control Law

Consider the attitude error dynamics (15) and (16), and the
control law

τ = kp,xyq̃e,red + kp,zsgn (q0) q̃e,yaw +Kdωe + τff, (21)
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Fig. 3: Visualization of the rotations represented by the re-
duced attitude error qe,red and the yaw error qe,yaw. The red
coordinate frame B represents the vehicle’s current attitude q
whereas the blue coordinate frame Bd represents the desired
attitude qd. Rotating the B-frame by qe,red (a rotation of
ϕe,red about ne,red) yields the intermediate green coordinate
frame Bd,red whose z-axis coincides with the desired z-axis.
A subsequent rotation by qe,yaw (a rotation of ϕe,yaw about
the desired z-axis) then also aligns the x- and y-axis with the
desired coordinate frame Bd.

where sgn (q0) is defined as

sgn (q0) =

{
1, if q0 ≥ 0,

−1, if q0 < 0,
(22)

Kd = diag (kd,xy, kd,xy, kd,z), τff consists of a feed-forward
and a feedback linearization term,

τff = J ˙̄ωd − Jω × ω, (23)

and kp,xy, kp,z, kd,xy and kd,z are positive scalar constants.
Then the following properties hold:

(i) The only equilibrium points of (15) and (16) are
(qe,ωe) = (±qI , 0).

(ii) The reduced attitude error almost globally asymptotically
converges to zero, i.e. qe,red(t)→ qI and ωe,xy(t)→ 0 as
t→∞ for almost all (qe(t0),ωe(t0)) ∈ S3×R3, where
ωe,xy is the vector consisting of the x- and y-component
of ωe.

(iii) The yaw error asymptotically converges to zero in
a neighbourhood of (qe,red,ωe,xy) = (qI , 0), i.e.
qe,yaw(t) → ±qI and ωe,z(t) → 0 as t → ∞ for all
(qe(t0),ωe(t0)) ∈ S3 × R3 with (qe,red(t0),ωe,xy(t0))
sufficiently close to (qI , 0).

(iv) The yaw error almost globally converges to zero, i.e.
qe,yaw(t) → ±qI and ωe,z(t) → 0 as t → ∞ for almost
all (qe(t0),ωe(t0)) ∈ S3 × R3, but not necessarily in a
Lyapunov sense.

(v) Both equilibrium points (±qI , 0) are stable.

Proof: It is straightforward to verify (i) by inserting the
control law (21) into the error dynamics (15) and (16).

In order to prove (ii), consider the Lyapunov candidate
function

V1 =
1

2
ωTe DJωe + kp,xy

(
1−

√
q20 + q23

)
, (24)

with D = diag(1, 1, 0). V1 is positive everywhere except at
(qe,red,ωe,xy) = (qI , 0), i.e. q20 + q23 = 1. The time derivative
of V1 along the trajectories of the system is

V̇1 = −ωTe D (kp,xyq̃e,red + kp,zq̃e,yaw +Kdωe)

+ kp,xyq̃
T
e,redωe, (25)

= −kd,xyω
T
e,xyωe,xy, (26)

≤ 0. (27)

Due to the non-autonomous nature of the error dynamics
(the desired attitude trajectory explicitly depends on time),
LaSalle’s invariance principle cannot be used to conclude
convergence of V1 [30]. However, since V̇1 is negative semi-
definite, V1(t) ≤ V1(0) for t ≥ 0 and hence ωe,xy is bounded.
The second time derivative of V1 is given by

V̈1 =−2ωTe DKdJ
−1(kp,xyq̃e,red+kp,zq̃e,yaw+Kdωe

)
, (28)

which is bounded because ωe,xy is bounded and qe,red is
structurally bounded. Therefore, V̇1 is uniformly continuous
and by Barbalat’s lemma, V̇1 → 0 as t → ∞, which implies
that the angular velocity error ωe,xy asymptotically approaches
zero and V1 converges. By inserting the control law (21)
into the angular velocity error dynamics (16), it becomes
obvious that V1 must converge to zero since ω̇e,xy only
vanishes for qe,red = qI . Note that although unit quaternions
are a singularity-free attitude representation, a singularity at
q20 + q23 = 0 has been introduced by splitting the attitude error
qe into a reduced attitude error qe,red and a yaw error qe,yaw.
As a consequence of the singularity, the control law (21) and
the time derivative of V1 are not defined when q20 + q23 = 0,
and hence the reduced attitude error only converges to zero
for almost all (qe(t0),ωe(t0)) ∈ S3 ×R3. This completes the
proof of (ii).

In order to prove (iii), consider the Lyapunov-like candidate
function

V2 =
1

2
ωTe Jωe +

{
2kp,z (1− q0) , if q0 ≥ 0,

2kp,z (1 + q0) , if q0 < 0,
(29)

which is positive everywhere except at (qe,ωe) = (±qI , 0).
Furthermore, let M be a set defined as

M := {(qe,ωe)∈ S3×R3|q20 + q23 = 1,ωe,xy= 0}. (30)

Note that M is an invariant set with respect to attitude
error dynamics (15) and (16), i.e. if (qe(t0),ωe(t0)) ∈ M,
then (qe(t),ωe(t)) ∈ M for all t ≥ t0. Suppose that
(qe(t0),ωe(t0)) ∈ M, then, for any t ≥ t0 and q0 6= 0, the
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time derivative of V2 along the trajectories of the system is
given by

V̇2 = −ωTe
(
kp,xyq̃e,red + kp,zsgn (q0) q̃e,yaw +Kdωe

)
+

{
kp,zq̃

T
e ωe, if q0 > 0,

−kp,zq̃
T
e ωe, if q0 < 0,

(31)

= −ωe,z
(
kp,zsgn (q0) q3 + kd,zωe,z

)
+

{
kp,zq3ωe,z, if q0 > 0,

−kp,zq3ωe,z, if q0 < 0,
(32)

= −kd,zω
2
e,z, (33)

≤ 0. (34)

The time derivative of V2 is not defined for q0 = 0, but
since V2 is continuous when q0 switches its sign, V2 is non-
increasing1. Following the same reasoning as for V̇1 and
invoking Barbalat’s lemma, the angular velocity error ωe,z
asymptotically approaches zero and V2 converges. Again, by
inserting (21) into (16), it follows that V2 must converge to
zero and as a result, qe → ±qI and equivalently qe,yaw → ±qI
as t→∞. Linearizing the error dynamics (15) and (16) about
the set M reveals that the error dynamics of q0, q3 and ωe,z
are not affected by small perturbations of (qe,red,ωe,xy) about
(qI , 0). Therefore, (qe,yaw, ωe,z) is asymptotically stable in a
small neighbourhood of M.

It follows from (ii) that (qe,red,ωe,xy) reaches the neigh-
bourhood of M in finite time and consequently (qe,yaw, ωe,z)
converges for almost all (qe(t0),ωe(t0)) ∈ S3 × R3, which
establishes (iv). Although (qe,yaw, ωe,z) is locally asymptot-
ically stable and globally converges to (±qI , 0), the errors
(qe,yaw, ωe,z) are not globally stable in the sense of Lyapunov
because they are not bounded during the finite time required
to reach the neighbourhood of M.

Lastly, (v) directly results from (i)-(iv). Since both
(qe,red,ωe,xy) and (qe,yaw, ωe,z) are locally asymptotically sta-
ble about (qI , 0) and (±qI , 0), respectively, it follows from
(19) that (qe,ωe) = (±qI , 0) are stable equilibrium points and
hence the control law (21) avoids the unwinding phenomena.

C. Discussion

1) Yaw Stability: The fact that the yaw error is only locally
asymptotically stable does not affect the overall stability of the
quadrocopter because the position dynamics only depend on
the reduced attitude error.

2) Control Law Interpretation: The torque due to the re-
duced attitude error pushes the quadrocopter’s z-axis along the
shortest angular path to the desired z-axis, while the torque due
to the yaw error induces a rotation about the quadrocopter’s
current z-axis. In contrast to conventional controllers whose
proportional action is directly in terms of the full attitude
error q̃e (see for example [11], [12], or similarly for rotation
vectors [13], [14] or rotation matrices [6], [10]), which rep-
resents the shortest rotation between the desired and current

1This can be rigorously shown by converting the error dynamics (15) and
(16) to a hybrid system with a discrete state denoting the sign of q0 (see for
example [31]) and applying Lyapunov stability for hybrid systems [32], but
is left out herein for the sake of brevity.
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Fig. 4: The top plots show the results of reorienting the
quadrocopter from rest with an initial attitude error of qe =
(0.37, 0.31,−0.39, 0.78) to rest with the proposed attitude
control law (21) and with a conventional attitude control law
(35). The proposed control law realigns the quadrocopter’s
z-axis following the shortest rotation while simultaneously
rotating about it in order to correct for errors in the yaw
orientation. The plot at the bottom shows the angle errors ϕ
of the reduced attitude error qe,red and yaw error qe,yaw. The
proposed controller corrects the reduced attitude error faster,
but at the expense of a slower response in the yaw error.

attitude including the yaw error, the proposed controller steers
the quadrocopter’s z-axis along a shorter angular path to
the desired direction and the reduced attitude error therefore
converges faster. A comparison for stabilizing an attitude error
with the proposed control law (21) and with a conventional
controller based on the full attitude error [33],

τ = sgn (q0)Kpq̃e +Kdωe + τff, (35)

is shown in Fig. 4. The control gains
Kp = diag (kp,xy, kp,xy, kp,z) and Kd are chosen to be
equal for both controllers such that the system response for
small errors is identical. A list of all relevant parameters used
to generate Fig. 4 can be found in Table I.

3) Decoupled Error Dynamics: The Lyapunov candidate
function V1 is invariant to any yaw rotation and angular
velocity about the quadrocopter’s z-axis and therefore only
captures the reduced attitude error dynamics. Its derivative
V̇1 is also invariant to any yaw rotation and angular velocity
about the z-axis and hence it can be concluded that the attitude
control law (21) decouples the reduced attitude error dynamics
from the yaw error dynamics. In addition, V̇1 does not depend
on the yaw torque and consequently the reduced attitude can be
fully controlled by the roll and pitch torque. Fig. 5 shows the
results for stabilizing the same error as in Fig. 4, but with the
yaw torque τz set to zero. Unlike controllers that the depend on
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Fig. 5: The plots on the top show the results of reorienting
the quadrocopter from rest for the same initial attitude error
as in Fig. 4 but with the applied yaw torque τz set to zero.
The bottom plot depicts the corresponding angle errors ϕ
for the reduced attitude error and yaw error. The results
of Fig. 4 with the yaw torque unconstrained are added for
reference and colored gray. The response of the vehicle’s z-
axis remains unaffected with the proposed control law due to
the decoupling of the reduced attitude error from the yaw error.
For controllers based on the full attitude error, the yaw error
is still partially corrected using roll and pitch torques, but the
rate of convergence of the reduced attitude error changes and
becomes slower.

the full attitude error, the convergence of the reduced attitude
is unaffected by the yaw torque constraint.

4) Controller Gains: Finding good controller gains can be a
tedious task. One approach to simplify the tuning of the control
gains is to analyze the system’s behaviour for small errors.
If the error dynamics are linearized around their equilibria
(±qI , 0), then they can be written as

¨̃qe = −1

2
J−1Kpq̃e − J−1Kd ˙̃qe. (36)

Therefore, by choosing the proportional gains according to

kp,xy =
2Jxx
σ2
xy

and kp,z =
2Jzz
σ2
z

, (37)

and the derivative gains according to

kd,xy =
2Jxxζxy
σxy

and kd,z =
2Jzzζz
σz

, (38)

the linearized system behaves like a second-order system with
time constant σxy and damping ratio ζxy along the roll- and
pitch-axis and with time constant σz and damping ratio ζz
along the yaw-axis, respectively.

V. CONTROL ALLOCATION

In this section a method for allocating the available rotor
thrusts to the desired collective thrust and torques is presented.

Since the feasible control inputs u are constrained to the set
U, also the set of the virtual control inputs that are attainable
from U is constrained. The set of attainable virtual control
inputs V can be determined from the set of feasible control
inputs (7) and the rotor thrust mapping (8),

V = {v ∈ R4 | umin1 � B−1v � umax1}. (39)

If the desired virtual control inputs v from the position and
attitude controller lie in the attainable set, i.e. v ∈ V, then
a feasible control input u ∈ U can simply be found by
inverting (8):

u = B−1v. (40)

However, if v /∈ V, then no feasible control input u ∈ U
can be found such that the rotors collectively generate the
desired virtual control input v. In this case, in order to
guarantee that the commanded rotor thrusts ui are feasible, it
is proposed to project the desired virtual control input v onto
the boundary of V by prioritizing the virtual control inputs
according to their importance for the stability and trajectory
tracking performance of the quadrocopter.

A. Control Prioritization

Because the correct orientation of the quadrocopter’s thrust
direction is crucial for tracking a desired position trajectory
and because in the design of the cascaded control scheme
(see Fig. 1) it is typically assumed that the orientation of the
quadrocopter’s thrust direction can be changed quickly, the
highest priority is given to achieving the desired roll and pitch
torque τx and τy . Since both the position and the reduced
attitude error dynamics are independent of the vehicle’s yaw
orientation, the second highest priority is given to achieving
the desired collective thrust f and the least priority is given
to the yaw torque τz . Consequently, the projection of v onto
V is performed as follows.

First, it is ensured that the desired roll and pitch torque
are attainable. Using the Fourier-Motzkin elimination [34] to
project V onto the τx, τy-plane, the inequalities describing the
set of attainable roll and pitch torques are found to be[

− (umax − umin) l
− (umax − umin) l

]
�
[
τx
τy

]
�
[
(umax − umin) l
(umax − umin) l

]
. (41)

The desired roll and pitch torque are thus constrained to

τ̂x ← constrain (τx,−τmax,xy, τmax,xy) , (42)
τ̂y ← constrain (τy,−τmax,xy, τmax,xy) , (43)

where τmax,xy = (umax − umin) l. Next, the set of attainable
collective thrusts for the given torques τ̂x and τ̂y is determined.
By inserting τ̂x and τ̂y into (39) and using the Fourier-Motzkin
algorithm to eliminate τz , the set of attainable collective thrusts
is found to be

4umin +
|τ̂x|
l

+
|τ̂y|
l︸ ︷︷ ︸

=:fmin

≤ f ≤ 4umax −
|τ̂x|
l
− |τ̂y|

l︸ ︷︷ ︸
=:fmax

. (44)
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Hence, if the desired collective thrust f exceeds the lower or
upper limit, it is clipped resulting in f̂ :

f̂ ← constrain (f, fmin, fmax) . (45)

Lastly, the attainable set of yaw torques is found by inserting
the adjusted torques τ̂x and τ̂y and the collective thrust f̂ into
(39),

κ

[
4umin − f̂ + 2

|τ̂y|
l

−4umax + f̂ + 2 |τ̂x|l

]
︸ ︷︷ ︸

=:τmin,z

�
[
τz
τz

]
�κ

[
4umax − f̂ −2

|τ̂y|
l

−4umin + f̂ −2 |τ̂x|l

]
︸ ︷︷ ︸

=:τmax,z

. (46)

The applied yaw torque is therefore constrained to

τ̂z ← constrain (τz,max (τmin,z) ,min (τmax,z)) . (47)

The resulting virtual control input v̂ = (f̂ , τ̂ ) is guaranteed to
be attainable, i.e. v̂ ∈ V, and consequently a feasible control
input u ∈ U that produces v̂ can be found using (40).

B. Discussion

Achieving the desired yaw torque is given the least priority
and is therefore the first one to be constrained. Since the
reduced attitude dynamics are independent of the applied yaw
torque, constraining the yaw torque does not compromise the
stability of the reduced attitude dynamics and equivalently
of the position dynamics. If the roll and pitch torques are
constrained, then stability of the reduced attitude dynamics is
not guaranteed anymore. In case the attitude to be tracked is
constant, i.e. qd(t) = qd, ωd(t) = 0, then it is shown in [35]
that the control allocation strategy preserves the stability of the
reduced attitude for the simplified attitude control law with no
feedback linearization term if kp,xy < τmax,xy/2. However, the
constraint on the proportional gain yields very slow controllers
and experiments have shown that also much larger control
gains work well in practice.

VI. RESULTS

In this section, experimental results demonstrating the per-
formance of the attitude controller and control allocation
strategy are presented. A video of the experiments is available
at https://youtu.be/QH0oEXQuC6c.

A. Experimental Setup

The experiments are carried out in Flying Machine Arena,
an indoor aerial vehicle test bed at ETH Zurich [36]. A
custom-built quadrocopter based on Ascending Technologies’
Hummingbird [37] equipped with a PX4FMU2 flight computer
is used. The flight computer contains a 168 MHz Cortex
M4F microcontroller that runs a state observer, a position
controller, the proposed attitude controller and the proposed
control allocation algorithm, all at a rate of 1 kHz.

The state observer estimates the quadrocopter’s position,
velocity and attitude and is driven by acceleration and angular
velocity measurements obtained from an inertial measurement
unit at a rate of 1 kHz. Every 20 ms, i.e. at 50 Hz, position and

2https://pixhawk.org/modules/px4fmu

attitude measurements from an external motion capture system
are sent to the quadrocopter through a low-latency wireless
communication channel and fused with the quadrocopter’s
state estimate.

A position controller as presented in [36] is applied to track
desired position trajectories. The control loop for the vertical
position is designed such that it responds to vertical position
errors pe,z = pd,z − pz like a second-order system with time
constant σz and damping ratio ζz:

σ2
z p̈e,z + 2ζzσz ṗe,z + pe,z = 0. (48)

Using the position dynamics (10) and the desired vertical
position dynamics (48), the desired collective thrust f is
computed to be

f =
m (p̈z + g)

R33 (q)
, (49)

where the scalar R33 (q) is the (3, 3) element of the rotation
matrix R (q). Similarly, two control loops for the horizontal
position of the quadrocopter are shaped to make the horizontal
position errors behave like second-order systems with time
constant σxy and damping ratio ζxy .

The attitude controller and control allocation strategy are
implemented as presented in Section IV and V, respectively.
The reference attitude for the control law is obtained as
follows: First, the commanded acceleration p̈ is converted to
a desired reduced attitude qd,red using (10), with rotation axis
and angle given by

ϕd,red = atan2
(√

p̈2x + p̈2y, p̈z + g
)
, (50)

nd,red =
1√

p̈2x + p̈2y

−p̈yp̈x
0

 . (51)

The desired reduced attitude qd,red is then rotated about its
z-axis by a desired yaw angle ϕd,yaw yielding the desired
attitude qd:

qd = qd,yaw ⊗ qd,red, (52)

with qd,yaw =
(
cos
(ϕd,yaw

2

)
, 0, 0, sin

(ϕd,yaw

2

))
. The quadro-

copter’s desired angular velocity and angular acceleration are
computed accordingly based on the nominal maneuver and
making use of the quadrocopter’s differential flatness [6].

Table I summarizes the control parameters as well as the
physical parameters of the quadrocopter used for the experi-
ments. The rotor thrust limits and thrust-to-torque ratio were
measured on a load cell and the quadrocopter’s moments of
inertia were obtained from a detailed CAD model.

B. Experimental Results

1) Error Recovery: To test the attitude controller and con-
trol allocation strategy’s response to large errors, the quadro-
copter is commanded a 2 m set point change along the x-
position and a jump in the desired yaw orientation from zero
to 135◦. The experiment is conducted three times: (a) with
the proposed attitude controller, (b) with the proposed attitude
controller but no set point change in yaw, and (c) with the
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conventional quaternion based PD-controller (35). In all three
cases, the proposed control allocation strategy is applied.

Fig. 6 shows the position error responses and Fig. 7 shows
the corresponding reduced attitude and yaw errors. Due to
splitting the attitude error into a reduced attitude and yaw error,
the proposed attitude controller moves the quadrocopter’s
thrust direction along the shortest angular path to the desired
thrust direction, i.e. only in the inertial xz-plane, whereas the
conventional control law rotates the thrust-direction out of the
inertial xz-plane and therefore causes a significant position er-
ror in the inertial y-direction. In addition, the proposed attitude
controller yields identical position responses independent of
the commanded yaw orientation, which can also be observed
in the reduced attitude error response. This is due to the control
allocation strategy that prioritizes the roll and pitch torques as
well as the desired collective thrust over the yaw torque. The
desired and the applied virtual control inputs of experiment (a)
are shown in Fig. 8. Although the large yaw error demands
for a large yaw torque, the applied yaw torque is initially
constrained to zero such that the demanded roll and pitch
torque can be met, and the large yaw error has therefore no
effect on the quadrocopter’s position response.

2) Trajectory Tracking: The effectiveness of the control
strategy for tracking aggressive maneuvers that require rotor
thrusts close to their saturation limits is evaluated by flying
a flip maneuver with a 180◦ yaw rotation as illustrated in
Fig. 9. The flip maneuver is executed three times: (a) with
the proposed attitude controller and control allocation strategy,
(b) same as (a) but without a yaw rotation, and (c) with
a conventional quaternion-based PD-controller (35) and with
clipping the desired rotor thrusts at their saturation limits
instead of the proposed control allocation strategy.

The quadrocopter’s position, attitude and angular velocity
during the flip maneuver are shown in Fig. 10, Fig. 11 and
Fig. 12, respectively. Up to 0.37 s, i.e. until the flip rotation
begins, the performance of both control strategies is similar.
After 0.37 s, large roll and pitch torques are required to track
the nominal maneuver, yielding rotor thrusts that are close to

TABLE I: Parameter Values.

Symbol Description Value
umin Minimum rotor thrust 0.2N

umax Maximum rotor thrust 3.4N

κ Rotor thrust-to-drag ratio 1.6× 10−2 Nm/N

l Arm length of the quadrocopter 0.17m

m Mass of the quadrocopter 0.523 kg

Jxx Moment of inertia about eBx 2.3× 10−3 kgm2

Jyy Moment of inertia about eBy 2.3× 10−3 kgm2

Jzz Moment of inertia about eBz 4.6× 10−3 kgm2

kp,xy Reduced attitude control P-gain 3.286Nm

kd,xy Reduced attitude control D-gain 0.230Nm/(rad/s)

kp,z Yaw control P-gain 0.197Nm

kd,z Yaw control D-gain 0.046Nm/(rad/s)

σxy x- and y-position time constant 0.35 s

ζxy x- and y-position damping ratio 0.95

σz z-position time constant 0.25 s

ζz z-position damping ratio 0.8
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is carried out for (a) the proposed attitude controller, (b) the
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controller (35).
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Fig. 7: Reduced attitude errors (top) and yaw errors (bottom)
of the quadrocopter corresponding to the position responses
depicted in Fig. 6. The response of the reduced attitude error
is faster with the proposed attitude control law, i.e. for (a) and
(b), than with a conventional controller (c), but at the expense
of a slower response in the yaw error.

their saturation limits, or even beyond due to disturbances and
model uncertainties. The proposed control allocation strategy
gives up yaw control in order to generate the desired roll and
pitch torques and collective thrust more accurately and hence
tracks the position trajectory better. Once the desired roll and
pitch torques are small, the yaw error is corrected. Due to
the decoupling of the reduced attitude from the yaw error
dynamics, the yaw error that is caused by not generating the
required yaw torque does not affect the tracking performance
of the position trajectory (compare position response (a) and
(b)). The conventional control strategy (c) tracks the desired
yaw orientation more accurately for a longer period since
none of the virtual control inputs is prioritized. However,
because neither the desired roll and pitch torque nor the desired
collective thrust are produced exactly, the reduced attitude
error and the position error increase. Note that even with the
proposed control allocation strategy, the conventional attitude
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virtual control inputs during each of the six steps.

controller is not able to track the position reference as well as
(a) because the increasing yaw error would induce a position
error in the y-direction (see Section VI-B1).

VII. CONCLUSION

This paper presented and analyzed an attitude control strat-
egy for quadrocopters that is computationally light-weight
and hence well-suited for running on board quadrocopters
at high rates. Based on separating the attitude error into a
reduced attitude error and a yaw error, a model-based PD
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controller (35) and thrust clipping. The dotted lines indicate
the reference trajectories.
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Fig. 11: Reduced attitude error and yaw error with respect
to the nominal flip maneuver. Both control strategies track
the flip maneuver well up to t = 0.37 s, at which point the
required roll and pitch torque increase in order to initiate the
flip. The proposed control strategy gives up the control of the
yaw orientation and focuses on tracking the desired reduced
attitude. Once the maneuver is finished and no more large roll
and pitch torques are required, the yaw error is corrected.

control law was derived that decoupled the reduced attitude
error dynamics from the yaw error dynamics. The decoupling
of the attitude error dynamics enabled the development of
a simple control allocation strategy that prioritizes achieving
the desired roll and pitch torque, which are required for the
control of the quadrocopter’s crucial thrust direction, over
the collective thrust and yaw torque. Because achieving the
desired yaw torque was given the least priority, it is the first
to be constrained if the available control authority becomes
scarce. Nonetheless, due to the decoupling of the attitude
error dynamics, constraining the yaw torque was shown to not
affect the reduced attitude error dynamics and equivalently the
position dynamics.

The proposed control strategy was implemented on board
a quadrocopter in order to evaluate its performance experi-
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Fig. 12: Angular velocity of the quadrocopter during the flip
maneuver for the three different cases (a), (b), and (c). The
dotted lines denote the reference angular velocities for the flip
maneuver with a 180◦ yaw rotation, i.e. for (a) and (c). It can
be seen how the proposed control strategy prioritizes tracking
the reduced attitude, i.e. the roll and pitch angular velocity,
whereas the conventional strategy attempts to track all desired
angular velocities.

mentally. The proposed control strategy showed to improve
the quadrocopter’s error recovery performance compared to
controllers that are directly based on the full attitude error,
as the quadrocopter’s thrust direction is pushed along the
shortest angular path towards the desired thrust direction and
thereby induces less position error. The control allocation
strategy in combination with the attitude control law was found
to increase the position trajectory tracking performance for
aggressive flight maneuvers where the desired rotor thrusts
may exceed their saturation limits, since no control effort is
wasted on tracking the non-crucial yaw angle and since the
yaw error does not affect the reduced attitude error dynamics.

Although the proposed attitude control approach was ex-
perimentally verified to be favourable when recovering from
large errors or tracking aggressive maneuvers, i.e. in scenarios
where the rotor thrusts reach their saturation limits, stability
of the control law has only been established in the absence
of saturations. Future work thus includes the extension of the
stability proof in order to take the rotor thrust saturations into
account.
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