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An Omni-Directional Multirotor Vehicle
Dario Brescianini and Raffaello D’Andrea

Abstract—In this paper we present the design, modelling and
control of an omni-directional multirotor vehicle, i.e. a fully-
actuated vehicle that can hover at any attitude and accelerate
in any direction. Based on a static force and torque analysis
for generic rotor configurations, an octorotor configuration is
derived that maximizes the vehicle’s agility while rendering its
characteristics almost rotationally invariant. A prototype vehicle
with the derived rotor configuration is built using reversible
fixed-pitch rotors that can generate positive and negative thrust,
enabling the vehicle to independently control its thrust and
torque in all three dimensions. A control scheme that allows for
simultaneously tracking a desired position and attitude trajectory
is introduced. Experimental results demonstrate the feasibility of
the vehicle design and control strategy.

Index Terms—Aerial robotics, unmanned aerial vehicles, me-
chanics, design and control.

I. INTRODUCTION

Unmanned aerial vehicles have seen a boost in popularity
over the past decade and are now increasingly applied com-
mercially across various industrial sectors, ranging from agri-
culture to filmmaking and entertainment [1]. Often, multirotor
vehicles such as quadrocopters or hexacopters are employed
in these applications due to their agility, hover-capability
and mechanical simplicity. However, these multirotor vehicles
are under-actuated [2], i.e. unable to control all of their
six degrees-of-freedom independently. In order to maximize
performance criteria such as flight duration, range or payload,
the rotors of multirotor vehicles are typically arranged in a
single plane, which limits the thrust the vehicles can generate
to a single direction normal to their rotors. As a result, the
vehicles’ position and attitude dynamics are coupled and in
order to accelerate in a desired direction, the vehicles have
to rotate such that their rotor disk normal is aligned with the
desired direction of acceleration.

A. Goal and Motivation

The inability of traditional multirotor vehicles to generate
thrust and torque independently of each other and in any
direction has far reaching consequences: Firstly, the vehicles’
sets of feasible flight maneuvers are severely limited due to
the coupling of their position and attitude dynamics. Secondly,
the vehicles are unable to resist arbitrary force and torque
disturbances without a substantial delay. This is due to the time
required to reorient the vehicles’ body-fixed thrust direction
and degrades the vehicles’ performance in scenarios that
demand high precision flight [3] and in scenarios where large
external disturbances are encountered, as in the emerging
field of aerial physical interaction (for example grasping and
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Fig. 1: The omni-directional multirotor hovering at an arbitrary
attitude.

object manipulation [4], [5], aerial construction [6], or human
interaction [7], [8]).

This article aims to overcome the limitations of traditional
multirotor vehicles by developing a fully-actuated multirotor
vehicle, i.e. a vehicle capable of independently controlling its
thrust and torque in all three dimensions. In particular, the
objective is to develop an omni-directional multirotor vehicle
that is able to hover at any attitude and accelerate in any
direction (see Fig. 1). Due to its ability to generate thrust and
torque in any direction, such a multirotor vehicle will render
novel flight maneuvers possible, which can, for example, be
exploited by applications that require an unconstrained motion
range such as aerial filming or manipulation. In these appli-
cations, the constrained motion range of traditional multirotor
vehicles is often made up for by a multi-degrees-of-freedom
robot arm attached to the vehicle, which yields systems that are
very complex to handle [9], [10]. Furthermore, although fully-
actuated multirotor vehicles are also unable to resist arbitrary
force and torque disturbances without any delay, their total
thrust and torque dynamics are in general significantly faster
than the attitude dynamics of traditional multirotor vehicles
[3], rendering them favourable for aerial physical interaction
tasks.

B. Related Work

Several fully-actuated multirotor vehicle designs that allow
control of all of the six degrees-of-freedom independently have
been developed in recent years and can be roughly divided into
two categories.

The first category comprises vehicles with non-planar rotor
configurations where the orientations of the rotor disks with
respect to the vehicle are fixed. By adjusting the amount
of thrust each individual rotor generates, these vehicles are
able to control the direction of their total thrust and torque.
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In order to possess full thrust and torque authority in all
three dimensions, at least six rotors arranged on at least three
different planes are required. In [11]–[13], hexrotor vehicle
designs are studied in which the rotors are spaced evenly
around the circumference of a circle and pairwise tilted about
their radial axis, such that the rotor disk normals span the
three dimensional Euclidian space. A similar approach is
pursued in [14], but the rotors are additionally tilted about their
tangential axis, allowing for more design flexibility. In [15] and
[16], multirotor vehicle designs are presented where both the
positions of the rotors and their orientations are determined
by solving an optimization problem. The objective of [15] is
to minimize the vehicle volume while maintaining a certain
thrust and torque controllability, whereas the objective of [16]
is to maximize the smallest maximum thrust and torque that
can be generated in any direction.

The benefit of full thrust and torque authority of non-planar
rotor configurations comes at the expense of reduced energy
efficiency with respect to planar rotor configurations due to
higher internal forces. This negative side effect is reduced
by vehicles of the second category, which can adjust the
orientation of their rotors during flight and thereby control the
direction of their total thrust and torque. In [17] and [18],
quadrotor vehicle designs are studied which use servomo-
tors to change the alignment of the rotors. In [19], a rotor
configuration consisting of three small variable-orientation
rotors mounted horizontally around two large counter-rotating
coaxial rotors is proposed. The two large rotors are responsible
for efficiently generating enough lift to overcome gravity,
while the small rotors are used to provide lateral forces.

The advantage of increased efficiency of variable-orientation
rotor configurations comes at the expense of significantly
more mechanical complexity, weight and cost. In addition,
even though tilting the rotors solves the problem of under-
actuation and allows the vehicle to independently generate
thrust and torque in any direction, the thrust and torque
response may not be fast enough to effectively resist arbitrary
force and torque disturbances due to the time required to
adjust the orientation of the rotor disks. In [20], an attempt
is made to combine the advantages of both categories with a
vehicle design consisting of six tilting rotors arranged on three
different planes. The proposed vehicle design allows for fast
changes of the vehicle’s thrust and torque by only adjusting the
thrust produced by the individual rotors, and tilting the rotors
is used to modify the rotor configuration from energy efficient
configurations with little control authority (almost planar rotor
configurations) to configurations with a lot of control authority
but less efficiency.

C. Contribution

Although several multirotor vehicle designs exist that are
capable of independently generating thrust and torque in any
direction, they are typically designed with a preferred direction
of orientation in which their particular arrangement of rotors
makes them most effective in overcoming gravity. As a result,
these multirotor vehicles are typically not able to hover at arbi-
trary attitudes due to rotor thrust constraints, even though they

are fully-actuated. This paper presents the design, modelling
and control of an omni-directional multirotor vehicle, i.e. a
fully-actuated multirotor vehicle that can provide sufficient
thrust and torque in any direction in order to hover at any
attitude and accelerate in any direction.

The vehicle design is formulated as an optimization problem
based on a static thrust and torque analysis for generic rotor
configurations. The objective is to find the rotor configu-
ration that maximizes the vehicle’s agility, while rendering
its characteristics as rotationally invariant as possible. The
outcome of the optimization is an octorotor vehicle design
with fixed rotor disk orientations, where the rotors are pairwise
aligned on four different planes. By using rotors capable of
generating positive and negative thrust, the vehicle is able
to independently generate a total thrust and torque in any
direction, which decouples its position and attitude dynamics
and enables it to fly novel maneuvers.

A control strategy is developed that allows for simulta-
neously tracking a desired position and attitude trajectory
and thereby taking full advantage of the vehicle’s omni-
directionality and decoupled position and attitude dynamics.
The control strategy is based on multiple cascaded control
loops, where it is assumed that the inner control loops can
track the input commands arbitrarily fast. Using loop shaping
and feedback linearization, each control loop is designed to
respond to input commands in the fashion of a linear first or
second-order system. All control gains can thus be expressed
in terms of time constants and damping ratios, allowing for
intuitive tuning of the control loops. Since the vehicle is over-
actuated (it has eight rotors to control six degrees-of-freedom),
a control allocation strategy is introduced with the objective
of minimizing the vehicle’s power consumption while taking
the rotors’ thrust constraints and dynamics into account.

A prototype vehicle with the proposed octorotor configura-
tion is built and used to experimentally evaluate the perfor-
mance of the vehicle design and control strategy. Different
flight maneuvers are executed to assess the vehicle’s omni-
directionality and ability to simultaneously track decoupled
position and attitude maneuvers. Futher experiments are con-
ducted to identify the effects of aerodynamic interference
between rotors that are neglected during the design of the
vehicle and controllers.

Preliminary results on the design and control of the vehicle
were presented in a conference paper [21]. In addition to pro-
viding a more thorough description of the vehicle design and
implementation, this paper extends the previously published
results

• by computing the optimal rotor configuration for different
numbers of rotors,

• by providing an analysis of the attainable set of thrusts
and torques,

• by introducing a control allocation strategy taking the
rotor dynamics and the set of attainable rotor thrusts into
account,

• and by experimentally identifying aerodynamic interfer-
ence between the rotors.
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D. Outline

The remainder of this paper is organized as follows: Section
II presents the design of an omni-directional multirotor vehi-
cle. Section III describes the implementation of a prototype
vehicle based on the derived vehicle design. Section IV
introduces a model of the vehicle’s dynamics, and in Section
V, a cascaded control scheme for the independent control
of the vehicle’s position and attitude is devised. In Section
VI, the feasibility of the vehicle design and control strategy
is demonstrated through experimental flight tests. Concluding
remarks are made in Section VII.

II. VEHICLE DESIGN

This section describes the design of an omni-directional
multirotor vehicle. A multirotor vehicle’s properties are mainly
determined by its rotor configuration, i.e. the number of rotors,
their position and their orientation. The objective of the vehicle
design is to find a rotor configuration that maximizes the vehi-
cle’s agility while rendering its characteristics as rotationally
invariant as possible. For ease of notation, vectors may be
expressed as n-tuples x = (x1, x2, . . . , xn) with dimensions
and stacking clear from context. Unless otherwise stated, all
three dimensional vectors are expressed with respect to a body-
fixed coordinate frame B with its origin at the vehicle’s center
of mass.

A. Design Considerations

A wide class of multirotor vehicles exists which differ in
their ability to adjust the orientation of their rotor disks and in
how the rotors generate lift. Before starting with the vehicle
design, the type of multirotor vehicle to be considered is
specified.

1) Variable-orientation vs. fixed-orientation rotor disks:
Multirotor vehicles capable of adjusting the orientation of
their rotor disks have the advantage that they can align the
rotor disks such that the desired total thrust and torque are
generated efficiently (see, for example, [20] and references
therein). However, the gain in efficiency comes at the expense
of additional mechanical complexity and weight compared
to a vehicle design with fixed rotor disk orientations due
to the additional actuators required to adjust the rotor disk
orientations. Furthermore, if the number of rotors is less than
six, variable-orientation rotor configurations generally require
the reorientation of their rotor disks in order to change the
total thrust and torque, which is considered to be slower
than changing the total thrust and torque by adjusting the
individual rotor thrusts and also more complex to control due
to gyroscopic torques acting on the vehicle when changing the
orientation of the rotors [12]. For these reasons, the vehicle
design is limited to rotor configurations with fixed rotor disk
orientations.

2) Variable-pitch vs. fixed-pitch rotors: In order for a
multirotor vehicle to be omni-directional, i.e. to be able to
generate sufficient thrust to hover at any attitude and accelerate
in any direction, it is beneficial if the rotors can produce
both positive and negative thrust, such that the load can be
distributed more evenly among all rotors. Generating both

positive and negative thrust can be accomplished by either
using variable-pitch rotors and changing the rotor’s angle
of attack from positive to negative or by using fixed-pitch
rotors and reversing the direction of rotation. In [22] it was
demonstrated that variable-pitch rotors allow for faster thrust
changes than fixed-pitch rotors, in particular when changing
from a positive to a negative thrust or vice versa. However,
variable-pitch rotors require an additional actuator to set the
pitch angle and are mechanically more complex due to the
many moving parts. Therefore, due to weight considerations
and their mechanical simplicity, only fixed-pitch rotors are
considered in the vehicle design.

The thrust generated by a fixed-pitch rotor can be changed
by changing the rotor’s angular velocity. Because most brush-
less electronic speed controllers (ESCs) rely on measuring the
motor’s back electromotive force to estimate its position and
control the commutations, a minimum angular velocity and
hence minimum thrust is required in order for the motor to
function properly. The thrust magnitude of a fixed-pitch rotor
is thus constrained to

0 < fmin ≤ |frot| ≤ fmax, (1)

where the upper thrust constraint can be due to many con-
straints, such as the maximum voltage supplied by the battery
that can be applied to the motor or the motor’s heat dissipation
capacity.

B. Static Thrust and Torque Analysis

Consider a generic N -rotor configuration where the i-th
rotor produces a thrust of magnitude frot,i along the fixed rotor
disk normal ni. Then, the total thrust generated by all N rotors
is given by

f =

N∑
i=1

frot,ini. (2)

Each rotor thrust frot,i causes a torque about the vehicle’s
center of mass due to the off-center mounting of the rotors,
and additionally due to aerodynamic drag, a torque that acts in
the opposite direction to the rotor’s direction of rotation. The
total torque acting on the vehicle can therefore be summarized
as

t =

N∑
i=1

frot,i (pi × ni) + κifrot,ini, (3)

where pi is the position of the i-th rotor relative to the
vehicle’s center of mass, the symbol × denotes the cross
product and κi is the rotor specific thrust-to-drag ratio that also
encodes the rotor’s direction of rotation (see Section IV-A for
details). The torque due to the aerodynamic drag of the rotors
is typically an order of magnitude smaller than the torque due
to the off-center mounting of the rotors1 and is thus assumed to
be negligible for the envisioned vehicle design, where torque

1This is based on the assumption that the rotors are placed at a distance of
at least a rotor diameter away from the vehicle’s center of mass [23].
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can be generated in any direction by exploiting the rotors’ off-
center mounting. The thrust and torque expressions (2) and (3)
can then be summarised as[

f
t

]
=

[
N

P ×N

]
︸ ︷︷ ︸

=:B̃

frot, (4)

with N and P being 3×N matrices composed of the column
vectors ni and pi, respectively, and with the i-th column of
P ×N being defined as pi × ni.

For the sake of tractability of the vehicle design problem, it
is further assumed that the minimum rotor thrust fmin is zero,
since the minimum thrust magnitude is very small in practice
and because it greatly simplifies the computation of the set of
attainable thrusts and torques2. The simplified set of attainable
thrusts and torques, denoted by Ṽ , is given by

Ṽ = {B̃frot ∈ R6 | frot ∈ RN , ‖frot‖∞ ≤ fmax}, (5)

where B̃ is the matrix defined in (4) that maps the individual
rotor thrusts frot to total thrust and torque v = (f , t), i.e.
v = B̃frot.

C. Rotor Configuration Optimization

We seek to find the rotor configuration that maximizes
the vehicle’s agility while rendering its characteristics as
rotationally invariant as possible. Since every additional rotor
adds mass and complexity to the vehicle, we look for the
rotor configuration with the minimum number of rotors. In the
following, the vehicle design is formulated as an optimization
problem based on the static thrust and torque analysis.

1) Design Objective: The objective of the vehicle design
is to find the rotor configuration that maximizes the vehicle’s
agility, where the smallest Euclidean norm of the maximum
attainable thrust and torque over all directions is taken as a
measure of the vehicle’s agility. Expressed differently, we seek
to find the rotor configuration such that the radius of the largest
Euclidean ball centered at the origin that is fully enclosed by
the attainable thrust and torque set Ṽ is maximized.

2) Design Constraints: In order for the multirotor vehicle
to be rotationally invariant, it must fulfill two requirements:
Firstly, it must be able to generate an equal amount of thrust
and torque in any direction, and secondly, its moment of inertia
must be rotationally invariant.

The first requirement cannot be achieved with a finite
number of rotors, however, the design objective can be seen
as an approximation thereof as it guarantees that an equal
minimum amount of thrust and torque can be generated in
any direction. To further enforce rotational invariance, we
also demand that the maximum amount of thrust and torque
that can be generated in the different directions are of equal
magnitude, i.e. that all vertices of the set of attainable thrusts
and torques are equally distant from the origin. These extrema
are achieved when the individual rotors generate thrusts of
magnitude |frot,i| = fmax, i.e. when ‖frot‖2 =

√
Nfmax. By

requiring that the all singular values of the thrust and torque

2A non-zero minimum rotor thrust fmin and its implications on the vehicle
design will be considered in a later step.

(a) N = 4 (b) N = 6 (c) N = 8

(d) N = 12 (e) N = 20

Fig. 2: If the rotors are constrained to the vertices of a regular
solids, i.e. a tetrahedron (a), an octahedron (b), a cube (c), an
icosahedron (d), a dodecahedron (e) or combinations of regular
solids with coinciding centers, then the vehicle’s moment of
inertia is rotationally invariant.

map B̃ are equal, or equivalently that the smallest and largest
singular values are equal,

σmax
(
B̃
)

= σmin
(
B̃
)
, (6)

it is ensured that for a given amount rotor thrusts ‖frot‖2, an
equal amount of thrust and torque ‖B̃frot‖2 can be generated
in any direction, i.e.

‖B̃frot‖2
‖frot‖2

= const, ∀frot ∈ {y ∈ RN | y ⊥ Null
(
B̃
)
}.

(7)

Note that in (7) it is necessary that the rotor thrusts do not lie
in the null space of B̃ as these rotor thrusts do not contribute
to the total thrust and torque.

Let J denote the vehicle’s moment of inertia with respect
to its center of mass expressed in the vehicle’s body-fixed
frame, and let J ′ be the moment of inertia described in a
frame rotated by any rotation matrix R ∈ SO(3) with respect
to the body frame. J ′ is then given by

J ′ = RJRT . (8)

In order for the moment of inertia to be rotationally invariant,
it must hold that J ′ = J for any R ∈ SO(3), which implies
that JR = RJ and consequently that the inertia tensor is a
multiple of the identity matrix, i.e. that all principle moments
of inertia are equal. In [24], it is shown that the moment
of inertia only reduces to a multiple of the identity matrix
for solids that have at least two n-fold rotational axes (with
n ≥ 3) such as regular solids. If it is assumed that the vehicle’s
moment of inertia is mainly determined by its rotor positions
and that the rotors can be approximated by point masses, then
the rotors have to lie on the vertices of regular solids (see Fig.
2) or combinations of regular solids with coinciding centers.
Since at least six rotors are required in order for the vehicle to
be able to independently control its thrust and torque in any
direction, or equivalently for B̃ to have full rank, the set of
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possible rotor positions P is constrained to regular solids and
combinations thereof with at least six vertices.

Note that all vertices of regular solids are equidistant from
the center. In order for the vehicle design to be scale invariant,
the rotors were chosen to lie on the unit sphere, i.e. ‖pi‖2 = 1,
such that the torques are normalized and a rotor thrust of one
unit results in at most one unit of total thrust and one unit of
total torque.

3) Optimization Problem: The vehicle design problem can
formally be stated as follows: We seek to find the rotor
configuration, i.e. the rotor positions P and rotor disk normals
N , that solves

maximize
P ,N

arg max
r

{
r : {v ∈ R6|‖v‖2 ≤ r} ⊆ Ṽ

}
subject to ‖ni‖2 = 1, ∀i ∈ {1, . . . , N},

P ∈ P,
σmax

(
B̃
)

= σmin
(
B̃
)
.

(9)

4) Discussion: Note that in the design objective of (9), the
total thrust f and the total torque t are equally weighted, but in
practice, one may be more important than the other. However,
it was numerically found that the optimal rotor configuration,
i.e. the rotor disk normals N and the rotor positions P (up
to scale), are independent of the weighting of the total thrust
f and the total torque t used in the optimization problem, or
equivalently of the size of ‖pi‖2. The distance of the rotors
from the vehicle’s center of mass can therefore be chosen in
a later step according to the torque requirements. The longer
the distance of the rotors from the vehicle’s center of mass,
the more torque can be generated (without decreasing the total
thrust). However, because the torque scales linearly with the
distance while the vehicle’s inertia scales quadractically with
the distance, a tradeoff between the vehicle’s maximum torque
and agility has to be made [2].

D. Optimal Rotor Configuration

The constrained nonlinear optimization problem (9) was
solved numerically using MATLAB’s fmincon-routine, and
Fig. 3a - 3d show the optimal rotor configurations for the
rotor positions constrained to an octahedron (N = 6), a cube
(N = 8), an icosahedron (N = 12) and a dodecahedron
(N = 20). Note that for N > 6, also other rotor positions exist
that yield moments of inertia that are rotationally invariant.
For example for N = 8, any rotor configuration with the
rotor positions constrained to the vertices of two arbitrarily
aligned tetrahedra with coinciding centers results in a rota-
tionally invariant moment of inertia. If the rotor positions are
constrained to the vertices of two arbitrarily aligned tetrahedra,
then the rotors are located pairwise at the vertices of a single
tetrahedron (see Fig. 3e, the two tetrahedra coincide) and the
rotor disks of each pair air aligned perpendicular to each other.
Although the simplified set of attainable thrusts and torques
has an inradius that is 15.1% larger than the optimal rotor
configuration with the rotors constrained to the vertices of a
cube, it is not realizable in practice due to the intersecting
rotor disks. Similar results were also found for N = 12 and
N = 20 and are therefore not depicted.

Due to the assumption that the rotors can generate thrusts
of arbitrarily small magnitude, the inner optimization problem
of (9) can be solved efficiently by reformulating the attainable
thrust and torque set (5) as a polyhedron [25] of the form

Ṽ = {y ∈ R6 | Ãvy � b̃v}, (10)

where the rows of the matrix Ãv encode the orientation of
polyhedron’s faces, the entries of the vector b̃v determine the
offset of the faces from the origin and � denotes component-
wise inequality. If the rows of Ãv are normalized to unit
length, then the maximum radius r is given by the smallest
component of b̃v . The number of faces3 of the polyhedron
(10), or equivalently the number of components of b̃v , is
proportional to

(
N
5

)
, which means that the effort to compute

(10) grows with N !/(N − 5)!. As a result, the optimization
problem for N = 6 could be solved in under a minute on a
regular laptop computer whereas the solution for N = 20 took
several hours to compute.

Note that the rotor disk normals of all rotor configurations
are aligned perpendicular to their position vectors in order
to maximize the torque output for a given rotor thrust. In
addition, the singular values of the thrust and torque map B̃
for all rotor configurations obtained the maximum attainable
value of

√
N/3 (see A for details), which implies that the rotor

configurations are capable of generating the largest possible
thrust and torque output.

Although the minimum rotor thrust magnitude is very small
in practice, the fact that the rotors cannot generate thrusts
of arbitrarily small magnitudes has a significant consequence:
Since the real set of feasible rotor thrusts (1) is disconnected,
the set of attainable total thrusts and torques for any rotor
configuration with only six rotors is also disconnected. This
implies that for the hexarotor configuration shown in Fig. 3a,
directions exist in which no thrust and torque can be generated,
and hence, the hexarotor configuration is unable to hover at
arbitrary attitudes. In order for the set of attainable thrusts
and torques to be connected, the thrust and torque map B̃
must have a non-trivial null space, which implies that the
vehicle must have more than six rotors. Since the optimal
rotor configuration with the minimum amount of rotors is
not realizable in practice (see Fig. 3e), we decided on the
suboptimal rotor configuration shown in Fig. 3b with the
rotor positions constrained to the vertices of a cube, which
is a special case of two arbitrarily aligned tetrahedra that
maximizes the distances between the rotors. The optimal rotor
configuration for the positions constrained to the vertices of a
cube is illustrated in Fig. 3b, where the rotor positions P and
rotor disk normals N are

P =
1√
3

1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1

 , (11)

N =

−a b −b a a −b b −a
b a −a −b −b −a a b
c −c −c c c −c −c c

 , (12)

3The faces of the polyhedron (10) in the six dimensional thrust and torque
space are spanned by any five column vectors of the thrust and torque map
B̃.
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eBx eBy

eBz

(a) N = 6, rmax = 1.41

eBx eBy

eBz

(b) N = 8, rmax = 2.31

eBx eBy

eBz

(c) N = 12, rmax = 4.24

eBx eBy

eBz

(d) N = 20, rmax = 7.88

eBx eBy

eBz

(e) N = 8, rmax = 2.66

Fig. 3: Rotor configurations obtained by numerically solving the optimization problem (9). The configurations (a)-(d) illustrate
the optimal solutions with the rotor positions constrained to the vertices of a regular octahedron, a cube, an icosahedron
and a dodecahedron. For N > 6, different rotor configurations exist that yield rotationally invariant moments of inertia. The
configuration (e) depicts the optimal rotor configuration with rotor positions constrained to the vertices of two arbitrarily aligned
tetrahedra whose centers coincide. Due the intersecting rotor disks, this rotor configuration is not realizable in practice. For a
normalized maximum rotor thrust of fmax = 1, the configurations (a)-(e) are able produce a thrust and torque output in any
direction with an Euclidean norm of at least rmax = 1.41, 2.31, 4.24, 7.88, and 2.66, respectively.

with a = 1/2 + 1/
√

12, b = 1/2− 1/
√

12 and c = 1/
√

3.
Due to the rotational invariance of the design objective and its
constraints, one may expect that all components of the rotor
disk normals are given by ±1/

√
3. However, this would yield

rotor disk normals that are not aligned perpendicular to their
position vectors and hence the rotors would not generate the
maximum possible torque for a given rotor thrust. Neverthe-
less, by expressing the rotor disk normals in a coordinate frame
that is rotated by π/6 about the vehicle’s z-axis yields the
expected result with the components of the rotor disk normals
given by ±1/

√
3.

E. Set of Attainable Thrusts and Torques

Since the cubic rotor configuration defined by (11) and (12)
has eight rotors, its thrust and torque map has a non-trivial null
space. However, a non-trivial null space is only a necessary
condition in order for the vehicle to be able to generate a
total thrust and torque in any direction despite a disconnected
set of rotor thrusts, but it does not imply that the vehicle can
generate all the thrusts and torques that lie in Ṽ .

Let Frot denote the set of feasible rotor thrusts,

Frot = {frot ∈ R8 | fmin ≤ |frot,i| ≤ fmax}. (13)

The real set of attainable thrusts and torques is then the union
of the 28 hypercubes defined by (13) projected onto the total
thrust and torque space by B,

V = {Bfrot ∈ R6 | frot ∈ Frot}, (14)

where B denotes the thrust and torque map that includes the
effects of aerodynamic rotor drag, i.e.

B =

[
N

P ×N +NK

]
, (15)

with K = diag (κ1, . . . , κ8)4. Due to the non-convexity and
complicated shape of (14), it is difficult to check if a given

4The null space of B̃ is spanned by the two null vectors (17) and (18). In
order to preserve the structure of the null space when taking the aerodynamic
rotor drag into account, the rotors 1-4 need to have the same handedness, and
the same holds for the rotors 5-8. The handedness of the rotors is discussed
in Section III-B.
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total thrust and torque lies within V . In the following, a
conservative, convex approximation of the set of attainable
thrusts and torques is derived that allows for easy verification
of the feasibility of a given thrust and torque.

Claim: If fmax ≥ 7fmin, then the cubic octorotor configu-
ration is capable of generating any thrust and torque in the
convex set

Vconv = {Bfrot ∈ R6 | frot ∈ R8, |frot,i| ≤ fmax − 2fmin},
(16)

i.e. Vconv ⊆ V .
Proof: The null space of the thrust and torque map B is

spanned by the two null vectors

η1 = (1, 1, 1, 1, 0, 0, 0, 0) , (17)
η2 = (0, 0, 0, 0, 1, 1, 1, 1) . (18)

It follows directly from the definition of null vectors that
biasing the rotor thrusts 1-4 or 5-8 by an equal amount does
not affect the total thrust and torque, i.e. that all all rotor thrusts

frot + φ1η1 + φ2η2 (19)

generate the same total thrust and torque as frot for any biases
φ1, φ2 ∈ R. Let Frot,conv be a convex set of rotor thrusts defined
as

Frot,conv = {frot ∈ R8 | |frot,i| ≤ fmax − 2fmin}. (20)

In order to proof the claim, it will be shown that for any
frot ∈ Frot,conv biases φ1 and φ2 exist such that the rotor thrusts
are feasible, i.e. frot + φ1η1 + φ2η2 ∈ Frot, from which it
then follows that Vconv ⊆ V . Without loss of generality due to
symmetry, only the rotors 1-4 are discussed in the following
and for the sake of readability, the notation will be misused
such that, for example, frot ∈ Frot means that the thrusts
of rotors 1-4 lie in Frot. Furthermore, it is assumed that the
rotor thrusts 1-4 are sorted in ascending order with rotor 1
generating the smallest thrust and rotor 4 generating the largest
thrust.

Consider any rotor thrusts frot ∈ Frot,conv. It follows from
(19) that if the rotor thrusts satisfy

frot,4 − frot,1 ≤ fmax − fmin, (21)

then the rotor thrusts can always be biased such that either all
rotors generate a positive thrust or a negative thrust and that
frot + φ1η1 ∈ Frot. For example, choosing φ1 = fmin − frot,1
yields frot,1+φ1 = fmin and frot,4+φ1 ≤ fmax (from (21)), and
hence the resulting rotor thrusts are feasible (see Fig. 4(a)).

If the constraint (21) is not fulfilled, i.e.

frot,4 − frot,1 > fmax − fmin, (22)

then the rotor thrusts have to be biased such that some rotors
generate a positive thrust whereas others generate a negative
thrust in order to be feasible. Inserting the assumption that
fmax ≥ 7fmin into (22), it follows that frot,4 − frot,1 ≥ 6fmin
and consequently that a pair of subsequent rotor thrusts exist
whose difference is larger than 2fmin, i.e.

max (frot,2 − frot,1, frot,3 − frot,2, frot,4 − frot,3) ≥ 2fmin.
(23)

In case of (22), it follows from frot ∈ Frot,conv that

frot,1 ∈ [−fmax + 2fmin,−fmin], (24)
frot,4 ∈ [fmin, fmax − 2fmin], (25)

i.e. only the rotor thrusts frot,2 and frot,3 can lie in the
infeasible range (−fmin, fmin). Consider the case when frot,2 ∈
(−fmin, fmin). If

frot,2 − frot,1 ≥ 2fmin, (26)

then the rotor thrusts can be biased by φ1 = fmin − frot,2
resulting in the feasible rotor thrusts frot + φ1η1 ∈ Frot (see
Fig. 4(b)), with φ1 ∈ (0, 2fmin). In particular, evaluating (19)
yields

frot,1 + φ1 ∈ [−fmax + 2fmin,−fmin], (27)
frot,2 + φ1 = fmin, (28)
frot,3 + φ1 ∈ [fmin, fmax], (29)
frot,4 + φ1 ∈ [fmin, fmax]. (30)

If (26) is not satisfied but instead it holds that

frot,3 − frot,2 ≥ 2fmin, (31)

then the rotor thrusts can be biased by φ1 = −fmin − frot,2,
with φ1 ∈ (−2fmin, 0), in order to make them feasible (see
Fig. 4(c)). In this case, evaluating (19) results in

frot,1 + φ1 ∈ [−fmax,−fmin], (32)
frot,2 + φ1 = −fmin, (33)
frot,3 + φ1 ∈ [fmin, fmax − 2fmin], (34)
frot,4 + φ1 ∈ [fmin, fmax − 2fmin]. (35)

Finally, if neither (26) nor (31) are satisfied, then, according
(23), it must hold that

frot,4 − frot,3 ≥ 2fmin. (36)

In this case, biasing the rotor thrusts by φ1 = −fmin − frot,3,
with φ1 ∈ (−4fmin, 0), yields the feasible rotor thrusts

frot,1 + φ1 ∈ [−fmax,−fmin], (37)
frot,2 + φ1 ∈ [−fmax,−fmin], (38)
frot,3 + φ1 = −fmin, (39)
frot,4 + φ1 ∈ [fmin, fmax − 2fmin], (40)

where it was used that frot,3 − frot,1 < 4fmin (see Fig. 4(d)).
Due to symmetry, the same argumentation can be made

if frot,3 ∈ (−fmin, fmin), and therefore for all rotor thrusts
frot ∈ Frot,conv a bias φ1 ∈ R can be found such that
frot + φ1η1 ∈ Frot without affecting the total thrust and torque
generated by the rotors, and hence Vconv ⊆ V . �

It follows from the proof above that Vconv is not only a
subset of V , but that both sets also share the same insphere.
Furthermore, it is straightforward to see that V is a subset of

{Bfrot ∈ R6 | frot ∈ R8, |frot,i| ≤ fmax} (41)

and that both sets share the same circumsphere. The loss
in the maximum attainable thrust and torque due of the
convex approximation of Vconv can therefore be bounded by
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frot
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(a)
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Fig. 4: Any set of rotor thrusts that satisfies
|frot,i| ≤ fmax − 2fmin, ∀i ∈ {1, . . . , 4}, can be made feasible
without affecting the total thrust and torque by biasing each
rotor with an equal amount of thrust. The gray shaded area
represents the set of feasible rotor thrusts and the dashed
lines indicate the boundaries ±(fmax − 2fmin).

eBx
eBy

eBz

Fig. 5: The omni-directional multirotor vehicle with the rotor
configuration designed in Section II. The rotor configuration
is embedded in a cubic chassis that protects the rotors from
collisions and provides structural rigidity.

2fmin/fmax. Due to the large ratio of fmax to fmin for the
propulsion systems typically used in multirotor vehicles, the
loss is usually very small, and hence the set Vconv will be
referred to as the set of attainable total thrusts and torques in
the remainder of this paper and its subscript will be dropped.
The set of attainable thrusts (at zero torque) and the set
of attainable torques (at thrusts sufficiently large to hover
at any attitude) of a prototype vehicle with the cubic rotor
configuration are depicted in Fig. 6a and Fig. 6b, respectively.

III. SYSTEM DESCRIPTION

This section describes the implementation of an omni-
directional multirotor vehicle with the cubic rotor configura-
tion (11) and (12). An image of the vehicle is shown in Fig 5.
The octorotor configuration is enclosed by a cubic chassis with

TABLE I: Physical attributes of the multirotor vehicle.

Symbol Description Value

m Total mass 0.892 kg

motors and rotors 0.448 kg

battery 0.205 kg

chassis 0.170 kg

electronics 0.046 kg

others (screws, cables, ...) 0.023 kg

Jxx Vehicle’s moment of inertia about eBx 1.16× 10−2 kg m2

Jyy Vehicle’s moment of inertia about eBy 1.13× 10−2 kg m2

Jzz Vehicle’s moment of inertia about eBz 1.13× 10−2 kg m2

Jrot Rotor’s moment of inertia about ni 3.41× 10−5 kg m2

‖pi‖ Distance of i-th rotor from center 0.184 m

fmin Minimum (absolute) rotor thrust 0.15 N

fmax Maximum (absolute) rotor thrust 6.25 N

The vehicle’s moment of inertia J = diag (Jxx, Jyy , Jzz) includes the
moment of inertia of the rotors and was obtained from a detailed CAD
model.

a characteristic edge length of 0.45 m. The vehicle has a total
mass of 0.892 kg and its rotors enable it to generate a total
thrust of at least 19.4 N in any direction.

In the following, the vehicle’s chassis, actuation and elec-
tronics are described in more detail.

A. Chassis
The main purpose of the chassis is to hold all components

in place and protect the rotors from collisions. It must be
lightweight to enable agile flight and must interfere as little
as possible with the rotors’ air streams. Furthermore, it must
be rigid enough to accommodate for the large internal forces
caused by the non-planar rotor configuration without deform-
ing and yet durable enough to withstand crashes. To meet these
requirements, a cubic chassis is constructed comprising com-
posite carbon tubes, for their light weight and stiffness, and
additively manufactured nylon (PA2200) parts, which exhibit
few fabrication constraints. The chassis is composed of three
main components: a centerpiece, which houses the battery and
holds all electronics, an outer cubic frame, which protects the
internal components and provides structural rigidity, and eight
composite carbon tubes that connect the outer frame with the
centerpiece and hold the rotor mounts.

Due to the chassis’ cubic shape, the vehicle’s center of mass
is located at the chassis’ geometrical center and the vehicle’s
moment of inertia remains almost rotationally invariant. The
rotor mounts are placed at a distance of 0.184 m from the
center and are connected together by thin composite carbon
tubes, which serve the purpose of increasing the rigidity, but
more importantly constrain the rotor positions and orientations
to the configuration defined by (11) and (12). The total weight
of the chassis is 0.170 kg, which corresponds to 19.1% of the
total vehicle weight.

Table I lists the vehicle’s most important physical attributes.

B. Actuation
The vehicle’s eight rotors are driven by off-the-shelf 14-pole

outrunner brushless direct-current (DC) motors (MRM Titan
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Fig. 6: The left figure (a) shows the set of attainable thrusts for
zero torque, which is described by a rhombic dodecahedron
with an inradius of 19.4 N. The right figure (b) shows the set
of attainable torques when generating a thrust of magnitude
mg in any direction, where m denotes the vehicle’s mass and g
denotes the gravitational constant, i.e. g = 9.81 m/s2. The set
of attainable torques is described by a similar dodecahedron
as (a) and has an inradius of 1.9 N m, however, it is slightly
skewed due to the contribution of the aerodynamic drag of the
rotors to the total torque. When generating zero thrust, the set
of attainable torques does not change its shape, but becomes
larger and has an inradius of 3.4 N m.

2208-1100KV), which are controlled by eight ESCs (DYS
SN20A) running the SimonK open-source firmware [26]. A
1800 mA h four-cell lithium-ion polymer battery (Thunder
Power RC TP1800-4SM70), which is located in the center of
the vehicle, powers the brushless DC motors. The battery is
capable of continuously providing power up to 1864 W, which
suffices to run all motors at their maximum angular velocity,
and the battery’s capacity lasts for approximately seven min-
utes of hover flight. The motors are directly connected to a
symmetric two-blade fixed-pitch rotor (Graupner 3D 8×4.5),
which generates a minimum thrust of 0.15 N and a maximum
thrust of 6.25 N at the motor’s minimum and maximum
angular velocity, respectively. In order to obtain the nicely
structured null space (17) and (18) of the thrust and torque
map B, the rotors 1-4 need to have the same handedness and
the rotors 5-8 need to have the same handedness. Since the
rotor disk normals of opposite rotors have the same rotor disk
normal, i.e. rotors for which pi = −pj , i 6= j, holds, it was
decided that opposite rotors should have different handedness
such that the sum of their angular momentum is typically
zero5. Motors 1-4 thus drive rotors that generate positive
thrusts when the motors are rotating clockwise, and motors 5-
8 drive rotors that generate positive thrust when the motors are
rotating counter-clockwise. The set of attainable thrusts when
generating zero torque and the set of attainable torques when
generating thrusts sufficiently large to hover at any attitude are
shown in Fig. 6a and Fig. 6b, respectively.

5This assumes that the vehicle mainly needs to generate a thrust and only
very little torque, such as, for example, during hovering. In this case, it is
easy to see that the control allocation strategy of Section V-E commands
opposite rotors to generate an equal amount of thrust in the long term and
hence opposite rotors rotate at an equal angular velocity.

The ESCs control the commutation steps of the motors, and
allow setting the voltage that is applied to each individual
motor by pulse-width modulating the battery voltage. The
duty-cycle of the pulse-width modulation can be set at a rate
of up to 4 kHz using the oneshot125 protocol. By reversing
the sequence of the commutation steps, the ESC can drive the
motor in either a clockwise or a counter-clockwise direction.

It is important to note that the ESCs do not directly control
the motors’ angular velocities, but only the applied voltages.
In order to control the motors’ angular velocities in a closed
loop and thereby achieve more accurate control and faster
response times, a digital-type tachometer has been installed
that provides angular velocity feedback. In particular, the
ESC’s firmware has been modified such that a pin of the ESC’s
microcontroller is toggled between high and low every third
commutation step, i.e. twice per electrical revolution. The time
between two subsequent toggles is measured by the vehicle’s
flight computer in order to calculate the motor’s angular
velocity. Note that this only allows control of the motor’s
angular velocity within a range where the rate of toggling
is high enough to provide sufficient bandwidth. However, the
minimal angular rate of the motor for which the zero-crossings
of the back electromotive force could reliably be detected
was found to be 178 rad/s. The motor used has 14 poles
and therefore 7 electrical revolutions are required for one
mechanical revolution. Feedback of the angular velocity is thus
obtained at a minimum rate of 396.7 Hz, which was found to
be sufficiently fast for the desired bandwidth.

C. Electronics
The primary electrical component is a flight computer

that is custom-designed to meet the vehicle’s on-board
sensing, communication and computation requirements. A
168 MHz ARM-based 32-bit microcontroller (ST Microelec-
tronics ARM Cortex-M4 STM32F405x) on the flight computer
board handles all the required on-board computation and runs
an in-house developed firmware based on the real-time operat-
ing system NuttX [27]. The flight computer is rigidly mounted
to the chassis’ center piece and is equipped with a nine-axis
MEMS inertial measurement unit (InvenSense MPU-9250)
that is capable of sampling the vehicle’s angular velocity and
translational acceleration at a rate of 1 kHz with a resolution
of 1.06× 10−3 rad/s and 4.79× 10−3 m/s2, respectively. The
inertial measurement unit (IMU) communicates its information
to the microcontroller over a serial peripheral interface (SPI).
A power board handles the power distribution from the battery
to the flight computer and ESCs. A 12-bit analog to digital
converter (ADC), which is available on the microcontroller,
is used to measure the battery voltage. The measured battery
voltage is used to accurately determine the duty-cycle of the
pulse-width modulated battery voltage that is applied to the
brushless DC motors by the ESCs. The flight computer is able
to receive commands from a base station through a low-latency
radio module (Laird RM024), and can transmit non-critical
telemetry data to a base station over a regular 2.4 GHz wireless
module (Microchip RN131). Both communication modules are
connected to the microcontroller through a standard universal
asynchronous receiver/transmitter (UART) interface.
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Fig. 7: Overview of the vehicle’s principal electrical compo-
nents. A custom-designed flight computer that is equipped
with a 32-bit microcontroller and a nine-axis IMU handles
all the on-board computation required to execute the flight
commands received. The microcontroller measures the motors’
angular velocities and the battery voltage in order to compute
the duty-cycle commands that are sent to the ESCs. Two
communication modules are used to receive commands from
a base station and transmit telemetry data.

An overview of the vehicle’s principal electrical components
is given in Fig. 7.

IV. SYSTEM MODELLING

This section presents models for the thrust and torque
generated by the rotors, the motor dynamics and the vehicle’s
position and attitude dynamics. The motor dynamics are
modelled to be independent of the vehicle’s position and
attitude dynamics because the motor dynamics are several
orders of magnitude faster than the position and attitude
dynamics and are controlled by high-bandwidth controllers.
The impact of the vehicle’s position and attitude dynamics on
the motor dynamics are therefore treated as disturbances that
are assumed to be taken care of by the motor controllers.

A. Rotor Thrust and Torque
The omni-directional multirotor vehicle can generate thrust

and torque by spinning its rotors. The thrust generated by the
i-th rotor can be modelled using momentum-blade element
theory [28] and results in an expression proportional to the
square of the rotor’s angular velocity Ωi,

frot,i = cf sgn (Ωi) Ω2
i , (42)

where cf denotes the rotor specific thrust coefficient and
sgn(Ωi) is defined as

sgn(Ωi) =

{
1, if Ωi ≥ 0,

−1, if Ωi < 0.
(43)

Every spinning rotor also causes a torque due to the aerody-
namic drag of its rotor blades that can be modelled similarly
to (42),

trot,i = −ctsgn (Ωi) Ω2
i , (44)
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Fig. 8: The thrust and torque coefficients cf and ct are
experimentally determined using load cell measurements. Each
dot denotes the average of 500 samples taken at a given
angular velocity and the solid lines denote curve fits of the
form (42) and (44), respectively. The root-mean-square error
(RMSE) of the thrust and torque fit for this experiment are
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TABLE II: Rotor parameters.

Symbol Description Value

cf Thrust coefficient 4.721× 10−6 N/(rad/s)2

ct Torque coefficient 6.976× 10−8 Nm/(rad/s)2

κ Thrust-to-drag ratio 1.478× 10−2 Nm/N

where ct denotes the rotor specific torque coefficient.
The rotor’s thrust and torque coefficients cf and ct are

functions of the rotor’s geometry, air density and incoming air
speed. While the former two can be assumed to be constant, it
is apparent from the rotor configuration that the incoming air
speed varies considerably depending on the thrust generated
by the other rotors and to a smaller extent on the vehicle’s
velocity. However, for the sake of simplicity, it is assumed
that the air surrounding the rotors is stationary such that cf
and ct can be modelled as constants, resulting in the constant
thrust-to-drag ratio |κi| = ct/cf that was used in (3).

The rotor’s thrust and torque coefficients were identified ex-
perimentally for the static case using a load cell. The measured
rotor thrust and torque are plotted against the rotor’s angular
velocity in Fig. 8, and the rotor’s characteristic attributes are
listed in Table II.

B. Motor Dynamics

Each rotor is driven by a brushless DC motor with per-
manent magnets rotating around a fixed armature with three
phases. An ESC is used to control the motor’s commutation,
such that at any time two phases are conducting while the
third phase is floating. This effectively hides many of the
complexities of a brushless DC motor, allowing it to be
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modelled as a conventional DC motor with its dynamics
described by the simplified electrical equation [29]

ui = Ri+ L
di

dt
+ keΩi, (45)

where ui is the voltage applied to phases of the i-th motor, i
is the current running through the phases, R is the phase-to-
phase resistance, L is the phase-to-phase inductance, and keΩi
is the internally generated voltage that is proportional to the
rotor’s angular velocity Ωi and scaled with the motor specific
voltage constant ke. For the sake of readability, the subscript
i is omitted when referring to the current running through the
i-th motor. The motor’s mechanical dynamics are governed by

JrotΩ̇i = kei− tload(Ωi), (46)

where Jrot is the moment of inertia of the rotor and the rotating
part of the motor, kei is the torque generated by the motor,
which is proportional to the current i and scaled by the positive
motor constant ke, and tload(Ωi) is the motor load torque due
to friction, viscous damping and the aerodynamic drag of
the rotor (44). The brushless DC motors used in multirotor
vehicles are typically designed to have a very low phase-to-
phase inductance, which implies that the motor’s electrical
dynamics are much faster than its mechanical dynamics and
can be neglected. The motor dynamics can therefore be
simplified by inserting (45) into (46) and setting the time
derivative of the current to zero, resulting in the nonlinear
first-order differential equation

Ω̇i = − 1

Jrot

(
tload (Ωi) +

k2e
R

Ωi

)
+

ke
JrotR

ui. (47)

Instead of modelling the motor load torque from first principles
and identifying all motor parameters, the motor dynamics
are characterized experimentally. The voltage ū required for
the motor to achieve a steady-state angular velocity of Ωi is
depicted in Fig. 9 and reads as

ū(Ωi) =
R

ke
tload(Ωi) + keΩi. (48)

The steady-state voltage can be approximated by a quadratic
polynomial,

ū(Ωi) ≈ cu,2Ω2
i + cu,1Ωi + cu,0, (49)

which is expected due to the quadratic dependency of the
rotor drag on the angular velocity, the linear term in (48)
and the viscous and static friction of the rotor. The motor’s
frequency response from applied voltage to angular velocity at
different operating points is shown in Fig. 10. A sinusoidally
varying voltage was applied to the motor with different voltage
offsets ranging from 3 V to 11 V, and the resulting angular
velocity amplitude around the steady-state angular velocity
was measured at 1 kHz. The angular velocity response is
characterized by a first-order system for frequencies up to
20 rad/s, which confirms that the electrical dynamics can be
neglected. The scalar ke/(JrotR) can be identified from the
frequency response’s steady-state gain and time constant. Table
III lists all relevant motor parameters.

Note that reversing the direction of rotation of the motor is
achieved by reversing the order of the commutation sequence
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TABLE III: Motor parameters.

Symbol Description Value

cu,2 Feed-forward voltage coefficient 3.292× 10−6 V/(rad/s)2

cu,1 Feed-forward voltage coefficient 8.230× 10−3 V/(rad/s)

cu,0 Feed-forward voltage coefficient 3.580× 10−2 V
ke

JrotR
Motor voltage gain 9.926× 102 (rad/s2)/V

and not by applying a negative voltage ui. While the direction
of rotation is being reversed, the above model does not
describe the motor dynamics well. In this case, the ESC
executes the commutation sequence in open-loop until the
back electromotive force can be measured reliably, and as
a consequence, the simplified electrical equation (45) does
not hold. Since the motor dynamics are substantially slower
when the commutations are executed in open-loop, a control
allocation strategy to avoid reversing the direction of rotation
is devised in Section V-E.



12

eIx eIy

eIz
eBx

eBy

eBz

f

t

g

1
2

3
4

5
6

7
8

Fig. 11: Illustration of the omni-directional multirotor vehicle
with its body-fixed coordinate frame B. The vehicle can
generate a total thrust f and a torque t in any desired direction
by adjusting the thrust of its eight rotors. In addition, gravity
g is acting upon the vehicle.

C. Vehicle Position and Attitude Dynamics

The omni-directional multirotor vehicle is modelled as
a rigid body with mass m and moment of inertia
J = diag (Jxx, Jyy, Jzz), where J includes the moments of
inertia of the rotors, which were modelled as disks. A list of
the vehicle’s physical parameters is given in Table I.

The vehicle’s translational degrees-of-freedom are described
by the position of its center of mass p = (px, py, pz) with
respect to an inertial frame I as illustrated in Fig. 11. The
rotational degrees-of-freedom are parametrized using a unit
quaternion q = (q0, q̃) that describes the rotation between the
inertial frame I and the body-fixed coordinate frame B, where
q0 is the quaternion’s scalar component and q̃ = (q1, q2, q3) its
vector component [30]. The evolution of the attitude in time
is determined by the vehicle’s angular velocity ω, which is
expressed in the body-fixed coordinate frame B, and reads as

q̇ =
1

2

[
0
ω

]
⊗ q, (50)

where ⊗ denotes the quaternion multiplication operator,

q ⊗ r =

[
q0 −q̃T
q̃ q0I3×3 − [q̃]×

]
r, (51)

I3×3 is the identity matrix and [q̃]× is the skew-symmetric
cross product matrix representation of q̃,

[q̃]× =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 . (52)

It is assumed that the multirotor vehicle operates mostly at
small velocities such that the aerodynamic drag on its fuselage
is negligible. The vehicle’s position and attitude dynamics are
then given by the Newton-Euler equations [31],

mp̈ = R(q)−1f −mg, (53)

Jω̇ +

8∑
i=1

JrotΩ̇ini = t− ω ×

(
Jω +

8∑
i=1

JrotΩini

)
,

(54)

where R(q)−1 is the rotation matrix that maps a vector from
the body-fixed coordinate frame B to the inertial frame I,

R(q) =
(
q20 − q̃T q̃

)
I3×3 + 2

(
q̃q̃T − q0[q̃]×

)
, (55)

g = (0, 0, 9.81)m/s2 denotes the acceleration due to gravity,
and f and t are the vehicle’s total thrust and torque defined by
(2) and (3), respectively. Because the rotors’ moment of inertia
Jrot is several orders of magnitude smaller than the vehicle’s
moment of inertia J (see Table I), it is furthermore assumed
that the term JrotΩ̇ini in (54) is negligible. Note that due to
the large rotor angular velocities Ωi, the angular momentum
of the rotors might still be comparable to that of the vehicle,
such that the term JrotΩini may not be negligible compared
to Jω.

V. CONTROL DESIGN

This section presents a control strategy that allows the omni-
directional multirotor vehicle to simultaneously track a desired
position and attitude trajectory pdes(t) and qdes(t), which are
generated for example using [32].

The control strategy is based on a cascaded control scheme,
and hence the control design is split into the design of several
controllers of lower-order dynamic systems. The controllers
of the lower-order systems are designed under the assumption
that the underlying control loops can track set point changes
perfectly, i.e. without any dynamics or delay.

A. Control System Overview

An overview of the full cascaded control system is de-
picted in Fig. 12. Because the vehicle’s position and attitude
dynamics are decoupled, the task of tracking position and
attitude trajectories is performed by two separate control loops.
First, thrust and angular velocity commands are computed
by a position and an attitude controller, respectively. The
commanded angular velocity is subsequently tracked by an
inner angular velocity control loop which outputs a torque
command. Using the thrust and torque map (15), the individual
rotor thrusts required to produce the commanded total thrust
and torque, or equivalently the rotor angular velocities, are
computed. Finally, the commanded rotor angular velocities are
tracked by continuously adjusting the voltage that is applied
to the motors.

Note that the angular velocity controller, control allocation
and motor controllers run on board, whereas the position
and attitude controller run off board. This is due to the
experimental setup where an external motion capture system
is used to measure the pose of the vehicle (see Section VI-A).
The on-board controllers perform feedback control on all
the states that are observable from local measurements, thus
avoiding sending accurately timed pose information to the
vehicle at high rates.

B. Position Control

The position tracking controller is shaped to respond to
position commands in the fashion of a linear, time invariant
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Fig. 12: Overview of the cascaded control system.

second-order system with time constant τpos and damping ratio
ζpos,

p̈ =
1

τ2pos
perr +

2ζpos

τpos
ṗerr + p̈des, (56)

where perr = pdes − p denotes the position error. Using the
position dynamics (53), the total thrust required to achieve the
desired second-order system response is found to be

fcmd = mR(q)

(
kpos,pperr + kpos,i

∫
perr dt

+ kpos,dṗerr + p̈des + g

)
,

(57)

where an integral term was added to reduce the steady-state
effects of disturbances and to compensate for modelling errors.
For an integral term with time constant τpos,i, the proportional,
integral and derivative gains kpos,p, kpos,i and kpos,d are given
by [33]

kpos,p =
1

τ2pos
+

2ζpos

τposτpos,i
, (58)

kpos,i =
1

τ2posτpos,i
, (59)

kpos,d =
2ζpos

τpos
+

1

τpos,i
. (60)

C. Attitude Control

A global asymptotically stable attitude control law similar to
[34] is applied that allows for tracking of any desired attitude
trajectory and thereby for fully exploiting the vehicle’s omni-
directionality.

The attitude error is defined as the rotation from the
vehicle’s current attitude to the desired attitude, i.e.

qerr = qdes ⊗ q−1, (61)

where q−1 = (q0,−q̃), resulting in the attitude error kinemat-
ics

q̇err =
1

2

[
0
ωdes

]
⊗ qerr −

1

2
qerr ⊗

[
0
ω

]
, (62)

where ωdes is the desired attitude trajectory’s nominal angular
velocity, i.e. the angular velocity that satisfies the attitude
kinematics (50). Since the space of unit quaternions dou-
ble covers the space of physical attitudes and each pair of

antipodal unit quaternions ±q represents the same physical
attitude, an attitude control law capable of steering the vehicle
to qerr = (±1, 0, 0, 0) has to be employed in order to avoid the
unwinding phenomena [35], i.e. that the vehicle unnecessarily
performs a rotation larger than π rad to reach the desired
attitude. In [34], the control law

ωcmd =
2

τatt
sgn(qerr,0)q̃err (63)

is shown to be globally asymptotically stable about the two
equilibria qerr = (±1, 0, 0, 0) for any stationary desired atti-
tude qdes, where the sign of the scalar component of the
attitude error is used as an indicator of which equilibrium is
closer. By inserting (63) into the attitude error kinematics (62),
it can be seen that for small deviations from the equilibria
(qerr,0 ≈ ±1, ‖q̃err‖2 � 1) the attitude error behaves like a
first-order system with time constant τatt,

q̇err ≈
[

0
− 1
τatt
q̃err

]
. (64)

In order to account for modelling errors and to not only be
able to stabilize the multirotor vehicle to a desired attitude, but
also track a desired attitude trajectory, the attitude control law
(63) is extended by an integral term [36] with time constant
τatt,i and a feed-forward term, resulting in

ωcmd = katt,psgn(qerr,0)q̃err

+ katt,i

∫
sgn(qerr,0)q̃errdt+R(qerr)

−1ωdes,
(65)

with the proportional and integral gains given by

katt,p =
2

τatt
+

2

τatt,i
, (66)

katt,i =
2

τattτatt,i
. (67)

The feed-forward term in (65) represents the desired angular
velocity expressed in the vehicle’s body-fixed frame B and
cancels the first term of (62).

D. Angular Velocity Control

The attitude controller’s commanded angular velocity is
tracked by an inner control loop that is designed such that
the components of the angular velocity ω track the angular
velocity commands ωcmd like a linear time invariant first-order
system with time constant τω . Using feedback linearization to



14

cancel the nonlinear terms in the attitude dynamics (54), the
torque required for the angular velocity to achieve the desired
first-order system response is found to be

tcmd =
1

τω
J(ωcmd − ω) + ω ×

(
Jω +

8∑
i=1

JrotΩini

)
.

(68)

E. Control Allocation

The task of the control allocation is to compute rotor thrust
commands frot,cmd such that the commanded total thrust and
torque vcmd = (fcmd, tcmd) are generated. Since the omni-
directional multirotor vehicle is over-actuated (it has eight
rotors to generate a six dimensional thrust and torque), no
unique map exists to allocate the commanded total thrust and
torque vcmd to rotor thrusts frot,cmd. We have thus decided
to solve the control allocation problem by means of an
optimization problem, where, in the long term, we seek to find
the rotor thrust commands frot,cmd that minimize the power
consumption (see B),

8∑
i=1

|frot,cmd,i|3/2, (69)

and in the short term, we seek to find the rotor thrust
commands that minimize the difference to the current rotor
thrusts frot,

8∑
i=1

(frot,cmd,i − frot,i)
2. (70)

In the design of the cascaded control structure it is assumed
that the underlying control loops can track set point changes
without any dynamics or delay. However, the rotors cannot
track commands arbitrarily fast in practice (see Section IV-B),
especially when the direction of rotation of a rotor needs to be
reversed [22]. The short-term objective can thus be interpreted
as an attempt to take the rotor dynamics into account. By
minimizing the difference between the commanded and the
current rotor thrusts, the rotor thrust commands are in general
easier to track and also reversing the direction of rotors is
partially avoided (since this would correspond to a rotor thrust
difference of at least 2fmin). Nevertheless, it was experimen-
tally found that the short-term objective only insufficiently
avoids rotor reversals. In order to avoid that a rotor reverses
its direction of rotation in rapid succession, which particularly
violates the assumption that set point changes can be tracked
without any dynamics or delay, we further employ a temporal
hysteresis on the direction of rotation of the rotors. Let
Frot,hyst ⊆ Frot be the set of rotor thrusts that does not require
any rotor to reverse its direction of rotation when it has
already reversed its direction within the past τhyst timespan.
The control allocation problem can then be stated as

minimize
frot,cmd

8∑
i=1

(1− ε)|frot,cmd,i|3/2 + ε(frot,cmd,i − frot,i)
2

subject to vcmd = Bfrot,cmd,

frot,cmd ∈ Fhyst
rot ,

(71)

where the scalar parameter ε ∈ [0, 1] is used to weight the
long-term versus the short-term objective and can be inter-
preted as a damping factor that determines the rate at which
the rotor thrust commands converge to the minimum power
solution. Due to the hysteresis constraint, it is possible that
the control allocation problem (71) has no solution although
the commanded total thrust and torque are attainable, i.e.
vcmd ∈ V . In this case, the time τhyst is decreased until a
solution exists, with the limit case of Frot,hyst = Frot for
τhyst = 0 s.

Because the set of feasible rotor thrusts Frot is not convex,
solving the optimization problem (71) is computationally
expensive and can typically not be done in real time on the
low-cost microcontrollers found on multirotor vehicles. Instead
of solving (71) directly, the structure of the control allocation
problem, in particular of the null space of the thrust and torque
map B, is exploited, which yields a computationally cheap
optimization problem that can easily be solved in real time
even on low-cost microcontrollers. As shown in (19), all rotor
thrusts that generate the commanded total thrust and torque
can be written as the sum of any rotor thrusts that generate
the commanded total thrust and torque and a multiple of the
null vectors of B,

frot,cmd = B†vcmd + φ1η1 + φ2η2, (72)

where B† is the pseudo-inverse of B,

B† = BT
(
BBT

)−1
. (73)

In order to ensure that the commanded rotor thrusts are
feasible, i.e. frot,cmd ∈ Frot, the biases φ1 and φ2 need to be
constrained to the sets Φ1 and Φ2, where

Φ1 ={φ1∈R | fmin1�|P1(B†vcmd + φ1η1)|�fmax1}, (74)

Φ2 ={φ2∈R | fmin1�|P2(B†vcmd + φ2η2)|�fmax1}, (75)

with P1 = (I4×4,04×4) and P2 = (04×4, I4×4). Because the
null vectors η1 and η2 contain only ones and zeros, the sets
Φ1 and Φ2 are straightforward to compute. Analogously to
Frot,hyst, the sets Φ1,hyst ⊆ Φ1 and Φ2,hyst ⊆ Φ2 are defined
as the sets of feasible rotor thrust biases that do not require
a rotor to reverse its direction of rotation if it has already
reversed its direction of rotation recently. Inserting (72) into
(71) then reduces the original control allocation problem with
eight optimization variables to two independent optimization
problems with each having only a single optimization variable,
the bias φ1 and the bias φ2, respectively. The optimization
problem for φ1 reads as

minimize
φ1

4∑
i=1

(1− ε)|f̂rot,cmd,i + φ1|3/2

+ ε
(
f̂rot,cmd,i + φ1 − frot,i

)2
subject to φ1 ∈ Φ1,hyst,

(76)

where f̂rot,cmd = B†vcmd. The optimization problem for φ2
can be written analogously to (76), but will not be discussed
in the following due to symmetry. Since the cost function
of (76) is convex, the optimal bias φ∗1 can be computed by
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first calculating the bias φ̃∗1 that minimizes the cost in the
unconstrained case. Then, if φ̃∗1 ∈ Φ1,hyst, the optimal bias is
given by φ∗1 = φ̃∗1, and otherwise the optimal bias is found at
the boundaries of Φ1,hyst. In practice, the φ̃∗1 is computed by
employing bisection6 to find the bias where the derivative of
the objective function with respect to φ1 is zero, i.e.

4∑
i=1

3

2
(1− ε)|f̂rot,cmd,i + φ1|1/2

+ 2ε
(
f̂rot,cmd,i + φ1 − frot, i

)
!
= 0.

(77)

One issue that can arise in the constrained case, i.e. when
φ1 ∈ Φ1,hyst, is that a lot of power is wasted due to the second
term of the objective function that penalizes large differences
in the rotor thrusts and prevents φ∗1 to jump to a solution
that consumes less power. This issue can be circumvented by
only allowing solutions that consume less power than in the
unconstrained case (if one exists), i.e. by adding the constraint

4∑
i=1

|f̂rot,cmd,i + φ1|3/2 ≤
4∑
i=1

|f̂rot,cmd,i + φ̃∗1|3/2 (78)

to the optimization problem (76).
Once the optimal biases φ∗1 and φ∗2 are computed, the

individual rotor thrust commands are found by evaluating (72)
and are subsequently converted into rotor angular velocity
commands using the rotor thrust model (42),

Ωcmd,i = sgn(frot,cmd,i)

√
|frot,cmd,i|

cf
. (79)

Fig. 17 shows the behaviour of the control allocation strategy
for varying thrust and torque commands including reversing
the rotors.

F. Motor Control

For traditional multirotor vehicles where all rotor disks are
aligned in a single plane, the direction of the total thrust is
independent of the motors’ angular velocities. However, due
to the non-planar rotor configuration (11)-(12), the direction
of the total thrust and torque of the proposed omni-directional
vehicle depends on the angular velocity of each motor, and
therefore, accurate control thereof is of fundamental impor-
tance. A feedback linearizing controller is employed such that
angular velocity commands are tracked in the fashion of a
linear, time-invariant, first-order system with time constant
τmot,

Ω̇i =
1

τmot
(Ωcmd,i − Ωi) . (80)

In order to be less prone to variations in the motor gain
RJrot/ke and steady-state voltage ū(Ωi) between different
motors, the controller is augmented with an integral term with

6Bisection is used to find the root of (77) because of its simplicity and
because the derivative of (77) with respect to φ1 is not defined, therefore
rendering other commonly used methods that rely on the function’s derivative
infeasible.

TABLE IV: Control parameters.

Symbol Description Value

τpos Position control time constant 0.325 s

τpos,i Position control integral time constant 1.33 s

ζpos Position control damping ratio 1.0

τatt Attitude control time constant 0.39 s

τatt,i Attitude control integral time constant 1.5 s

τω Angular velocity control time constant 0.044 s

ε
Control allocation short vs. long-term

0.95
objective weight

τhyst Temporal hysteresis on rotation direction 0.75 s

τmot Motor control time constant 0.032 s

τmot,int Motor control integral time constant 0.199 s

time constant τmot,int. The voltage command is then found
using (47),

ucmd,i =
RJrot

ke

(
kmot,p (Ωcmd,i − Ωi)

+ kmot,i

∫
(Ωcmd,i − Ωi) dt

)
+ ū (Ωi) ,

(81)

where the proportional and integral gains kmot,p and kmot,i are
given by

kmot,p =
τmot,int

τmot (τmot,int − τmot)
, (82)

kmot,i =
1

τmot (τmot,int − τmot)
. (83)

G. Discussion

All controllers are shaped to respond to commands in the
fashion of linear time-invariant first or second-order systems
with the tuning parameters being time constants and damping
ratios. The time constants and damping ratios of each control
loop were manually tuned on the real system and are listed in
Table IV.

Note that the effects of actuator saturation are not consid-
ered in the proposed control design and special attention needs
to be paid when implementing the controllers with integral
action to avoid integrator windup [33], [36]. Because devising
control strategies that guarantee stability in the presence of
actuator saturations is a difficult problem, in particular when
not just stabilizing a system but tracking trajectories, it is
considered to be beyond the scope of this paper and left
for future work. The proposed control strategy only yields
the desired first and second-order system responses when the
errors are small. Total thrust and torque commands vcmd that
lie outside the set of attainable total thrusts and torque V are
currently handled by projecting them onto the boundary of
the set of attainable total thrusts and torques while preserving
their direction. This can be done in a computationally efficient
manner by downscaling the total thrust and torque command
until the differences between the largest and smallest rotor
thrust of f̂rot,cmd = B†vcmd for the rotors 1-4 and 5-8 are
smaller than 2fmax − 4fmin (see Section II-E), and has shown
satisfactory results in practice.
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VI. RESULTS

This section presents experimental flight tests that were
carried out in order to validate the vehicle design and control
strategy as well as to demonstrate the capabilities of the omni-
directional multirotor vehicle.

A video of the vehicle performing various maneuvers is
available at https://youtu.be/sIi80LMLJSY. The vehicle
has further been showcased in front of a live audience during
Raffaello D’Andrea’s talk at the TED conference 2016, avail-
able at https://youtu.be/RCXGpEmFbOw.

A. Experimental Setup

All experiments following were carried out in the Flying
Machine Arena [37], an indoor test bed for aerial vehicles
at ETH Zurich. The Flying Machine Arena is equipped with
a motion capture system that measures the vehicle’s pose at
a rate of 200 Hz. The pose measurements are processed on
a desktop computer by a Luenberger observer that estimates
the vehicle’s position, velocity and attitude. Based on these
estimates, thrust and angular velocity commands are computed
by the off-board position and attitude controller at a rate of
50 Hz and subsequently sent to the vehicle through a low-
latency radio link. The closed-loop latency between observing
the vehicle’s pose and receiving commands on board the
vehicle was identified to be 39 ms and is compensated by
running the off-board controllers with state estimates that are
predicted forward in time by the closed-loop latency. The off-
board angular velocity controller and control allocation run at
a rate of 500 Hz and the motor controllers run at 1 kHz.

B. Aerodynamic Interference

In the model of the rotor thrust (42) and torque (44), it
was assumed that the air surrounding the rotors is stationary
and aerodynamic effects such as interference between the
rotors were neglected. In order to verify this assumption and
characterize the effects of aerodynamic interference, thrust
and torque measurements of the vehicle during flight are
taken and compared with the thrust and torque predicted by
the total thrust and torque model (2) and (3) based on the
measured rotors’ angular velocities. In order to obtain accurate
thrust and torque measurements, the vehicle is commanded to
hover at random attitudes while carrying weights of varying
masses between 0.028 kg and 0.126 kg mounted on the vehicle
at different positions approximately 0.46 m off the vehicle’s
center of mass. The thrust and torque generated by the
rotors are then inferred from the vehicle’s attitude and the
gravitational acceleration that acts on the vehicle. A total of
2036 measurements at uniformly sampled random attitudes
were taken, and the RMSE of the Euclidean norm of the
thrust and torque residuals were computed to be 1.73 N and
0.235 N m, respectively.

It was found that the rotors generate significantly less thrust
and torque than that measured on a load cell for a single rotor
due to the fact that the thrust and torque efficacy of a rotor
decreases with increasing speed of the incoming air flow. By
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Fig. 13: 150 samples of total thrust generated by the vehicle
when hovering at different attitudes. The crosses represent
the total thrust inferred from the pose measurements and the
dots represent the predicted thrust based on the rotor angular
velocities and the adjusted thrust and torque coefficients.

minimizing the RMSE of the total thrust and torque residuals7,
the decrease in efficacy was identified to be 14.2% for the
thrust and 19.5% for the torque, resulting in RMSE of 0.75 N
and 0.192 N m, respectively. Fig. 13 shows 150 samples of
the measured total thrust and its predicted total thrust using
the fitted thrust efficacy. Due to the highly symmetric rotor
configuration, it was assumed that the decrease in efficacy is
equal for each rotor. Although more complex models could be
fitted, assuming an equal decrease for each rotor was found
to work well in practice and furthermore allows for a simple
computation of the required rotor angular velocity for a given
total thrust and torque command.

In the following experiments, the rotor angular velocity
commands are compensated for the decrease in the thrust and
torque efficacy.

C. Decoupled Position and Attitude Dynamics

Using the proposed control strategy, the vehicle can fly
arbitrary position and attitude paths. As an example, the
vehicle is commanded to track a figure of eight at a speed of
approximately 1 m/s in the inertial xz-plane while simultane-
ously rotating about the body-fixed axis 1/

√
6
(√

2,
√

3,−1
)

at a rate of 0.4 rad/s. The figure of eight consists of two circle
segments with a radius of 1.2 m that are connected by splines,
where the order of the splines is chosen such that the nominal
thrust and torque commands are continuous. Fig. 14 shows a
time lapse of the vehicle tracking the maneuver, and in Fig. 15
and Fig. 16, the position and attitude errors as well as the
corresponding rotor thrust commands for three executions of
the maneuver are illustrated. The position and attitude tracking
error appear to correlate, indicating that the control strategy is
not able to fully decouple the vehicle’s position and attitude
dynamics. Furthermore, the errors appear to be repetitive,
which could be due to unmodelled aerodynamic effects. The

7The torque was normalized by the inverse of rotor distance from the
vehicle’s center of mass such that a rotor thrust of 1 N of generates a torque
of 1 N m.
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peaks in the attitude error, for example at around t = 3 s, are
caused by one of the rotors reversing its direction of rotation,
after which the vehicle sometimes struggles to maintain its
attitude.

D. Control Allocation

The effect of the control allocation strategy becomes most
apparent when the commanded total thrust or torque changes
substantially, such as when the vehicle executes large attitude
changes. The two upper plots of Fig. 17 depict the commanded
total thrust and torque of the vehicle when rotating at a fixed
position about its body-fixed x-axis at a rate of 0.6 rad/s for
π rad. The two lower plots depict the corresponding rotor
thrust commands of rotors 1-4 and their bias φ∗1, respectively.
It can be seen that the control allocation attempts to bias
the rotor thrusts in order to prevent the rotors from changing
their direction of rotation (for example shortly t = 4 s). If
the bias becomes too large, i.e. the total thrust and torque is
generated inefficiently, the bias jumps by ±2fmin such that the
rotor that previously generated a thrust of fmin now generates
a thrust of −fmin or vice versa. Due to the second term in
the control allocation objective function (71) that penalizes
large differences in the rotor thrusts, the bias does not jump to
the minimum power solution even if it would be feasible, but
gradually approaches the minimum power solution. Sometimes
after the direction of rotation of a rotor is reversed, the vehi-
cle’s attitude and consequently the commanded total torque
begin to oscillate, as can be seen at t = 2.3 s.

VII. CONCLUSION

This paper presented the mechatronic design of an omni-
directional multirotor vehicle. Based on a static thrust and
torque analysis, an octorotor configuration was derived that
maximizes the vehicle’s agility while rendering its characteris-
tics almost rotationally invariant and its set of attainable thrusts
and torques was analyzed. A prototype vehicle with the derived
rotor configuration was built using reversible fixed-pitch rotors
that enable the vehicle to independently generate thrusts and
torques in any direction. A simplified model of the vehicle
dynamics was introduced and a cascaded control strategy was
presented that allows the vehicle to simultaneously track a
desired position and attitude trajectory. Experimental flight
tests were conducted to validate the feasibility of the vehicle
design and the proposed control strategy.

The ability of the vehicle to independently control its thrust
and torque in any direction facilitates novel flight maneuvers
and enables the vehicle to, for example, fly in confined spaces
or take off at arbitrary attitudes. However, these benefits
come at the expense of increased vehicle mass and reduced
hover efficiency with respect to traditional multirotor vehicles.
Any application will have to consider the tradeoff between
increased maneuverability and reduced payload, range and
flight duration.

When deriving a model for the thrust and torque generated
by the rotors, the aerodynamic interference between the rotors
was neglected and its effect on the rotors was characterized
in a later step, however, only for near hover conditions.

Similar simplifying assumptions were made in the design of
the control strategy, where, for example, the effects of rotor
thrust saturations were neglected and it was assumed that the
errors from the desired trajectories are small. The applicability
of both the vehicle design and control strategy at high speeds
or under large wind disturbances thus remains to be proven
in future work. A possibility to circumvent the problem of
deriving an accurate model for the rotor thrust and torque
despite significant interference between rotors could be to
directly control the aerodynamic power of a rotor instead
of its angular velocity [38], which was shown to be more
robust to difficult to model aerodynamic effects such as rotor
interference, but requires the ability to accurately measure the
power consumed by each rotor.

The experimental results demonstrated the vehicle’s omni-
directionality, but have also revealed that the vehicle struggles
to maintain its attitude when one of the rotors is reversing
its direction of rotation. When a rotor is reversed, a large
reaction torque acts on the vehicle due to the change in the
rotor’s angular momentum. In the proposed control strategy,
this reaction torque is neglected and treated as a disturbance.
Possible future work could therefore be to identify these
disturbances using, for example, iterative learning and consider
them in a feed-forward term. Another reason for the vehicle’s
struggle to maintain its attitude when a rotor’s direction of
rotation is reversed lies in the control allocation strategy, where
it is assumed that the rotors can track the angular velocity
commands sufficiently fast. However, when a rotor’s direction
of rotation is reversed, it is operated in open-loop for a short
period of time and its angular velocity cannot be controlled
at all. The control allocation strategy should therefore only
allocate the desired total thrust and torque to the rotors that are
controllable. Similarly, this strategy could also be employed
in order to maintain safe flight in case of a rotor failure.

Apart from improving the control strategy and verifying
the applicability of the vehicle design and control strategy at
high speeds, possible future work also includes the use of
the proposed multirotor vehicle for aerial physical interaction.
The vehicle’s ability to independently control its thrust and
torque in any direction is envisioned to be advantageous to
cope with large external disturbances that typically occur in
such scenarios. Furthermore, the vehicle’s omni-directionality
could be exploited to manipulate objects with a simple gripper
rigidly attached to the vehicle instead of using a complex
multi-degree-of-freedom robot arm.

APPENDIX A
MAXIMUM MINIMUM SINGULAR VALUE OF THE THRUST

AND TORQUE MAP

In this appendix, the theoretical maximum of the smallest
singular value of the simplified thrust and torque map B̃ is
derived.

The singular values of any matrix A ∈ RM×N , with
M ≤ N , are given by the square root of the eigenvalues of
AAT ,

σj
(
A) =

√
λj(AAT ), j = 1, . . . ,M, (84)



18

Fig. 14: Time lapse of the vehicle tracking a figure of eight at a speed of approximately 1 m/s while simultaneously rotating
about a body-fixed axis. The vehicle starts in the center at t = 0 s and then moves towards the right-hand side. Snapshots of
the vehicle are taken once every full second until the full figure of eight is completed at t = 15.71 s. The dashed line indicates
the reference position.
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Maximizing the smallest singular value σmin is therefore
equivalent to maximizing the smallest eigenvalue λmin. The
sum of all eigenvalues of a matrix is equal to its trace, i.e.

M∑
j=1

λj(AA
T ) = trace(AAT ). (85)
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Let ai denote the i-th column of A. The trace of AAT is



19

PSfrag replacements

Time [s]

B
ia

s
[N

]
R

o
to

r
th

ru
st

s
[N

]
T

o
ta

l
to

rq
u
e

[N
m
]

T
o
ta

l
th

ru
st

[N
]

0 1 2 3 4 5 6 7

−0.5
0

0.5

−5

−2.5

0

2.5

5

−0.2

0

0.2

−10

0

10

fx

fy

fz

tx
ty

tz

frot,1

frot,2

frot,3

frot,4

fmin

−fmin

Fig. 17: The vehicle’s total thrust and torque commands
and corresponding rotor thrusts and bias of rotors 1-4 when
performing a rotation about its body-fixed x-axis for π rad.
The rotation starts at t = 1 s. The vertical dotted lines
indicate the time instants when one of the rotors is reversing
its direction of rotation. The black line in the bottom plot
represents the applied bias of rotors 1-4 whereas the gray line
represents the power optimal bias.

then straightforward to compute and is given by

trace(AAT ) = trace(ATA). (86)

=

N∑
i=1

aTi ai. (87)

Evaluating (87) for the simplified thrust and torque map B̃
whose columns are given by bi = (ni,pi × ni) yields

trace
(
B̃B̃T

)
=

N∑
i=1

bTi bi, (88)

=

N∑
i=1

(
nTi ni + (pi × ni)T (pi × ni)

)
(89)

≤ 2N, (90)

where it was used that the rotor positions in the vehicle design
are normalized to unit length, i.e. ‖pi‖2 = 1. Since there is
an upper bound on the sum of the eigenvalues, the smallest
eigenvalue is maximized if every eigenvalue is equally large,
i.e.

λj =
2N

6
, j = 1, . . . , 6, (91)

which implies that smallest singular value of B̃ can take at
most the value

√
N/3.

APPENDIX B
ROTOR POWER CONSUMPTION

In this appendix, the power required by the i-th rotor to
generate a thrust frot,i is identified. For the sake of readability,
the subscript i is omitted in the remainder of this appendix.

The power consumed by an individual rotor is determined
by the voltage u that is applied to the motor and the current
i that runs through its phase windings,

P = ui. (92)

By inserting the motor’s electrical dynamics (45) and mechan-
ical dynamics (46) into (92), the static power required for a
rotor to rotate at an angular velocity Ω is found to be

P =
Rtload(Ω)

2

ke
+ Ωtload(Ω) . (93)

The motor load torque tload (Ω) is mainly due to the aero-
dynamic drag of the rotor, which is proportional to the
square of the angular velocity, and to a smaller extent due
to friction and viscous damping. It therefore follows that the
first term in (93), which represents the electrical power loss
of the rotor, is characterized by a fourth-order polynomial
in angular velocity and that the second term in (93), which
represents the mechanical power, is characterized by a third-
order polynomial in angular velocity. Experimental results of
the power consumption of a single rotor are shown in Fig. 18.
It can be seen that mechanical power dominates the power
consumption and that although the electrical power losses are
significant at high angular velocities, the power consumption
can be well approximated by a term that is proportional to the
third power of the angular velocity

P ∝ Ω3. (94)

Since the thrust magnitude is proportional to the angular
velocity squared (42), it follows that the power required
for a rotor to generate a rotor thrust of magnitude |frot| is
approximately given by

P ∝ |frot|3/2. (95)
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assisting with the development of the electronics.

This research was supported by the Swiss National Science
Foundation (SNSF).



20

PSfrag replacements

Angular velocity [rad/s]

P
o
w

er
[W

]

0 200 400 600 800 1000 1200
0
20
40
60
80

100
120
140
160

Fig. 18: The dots depict the experimentally determined power
required for the rotor to spin at a given angular velocity and
the triangles represent the measured mechanical power output.
The required power can be approximated by a function that is
proportional to the third power of the angular velocity (solid
line) with a RMSE of 0.401 W. Due to symmetry, only positive
angular velocities are shown.

REFERENCES

[1] M. Mazur, A. Wisniewski, and J. McMillan, “Clarity from
above,” 2016. [Online]. Available: https://www.pwc.pl/pl/pdf/clarity-
from-above-pwc.pdf

[2] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Mod-
eling, estimation, and control of quadrotor,” IEEE Robotics Automation
Magazine, vol. 19, no. 3, pp. 20–32, Sept 2012.

[3] G. Jiang and R. Voyles, “A nonparallel hexrotor uav with faster response
to disturbances for precision position keeping,” in IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), Oct 2014,
pp. 1–5.

[4] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, mod-
eling, estimation and control for aerial grasping and manipulation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sept 2011, pp. 2668–2673.

[5] S. Kim, S. Choi, and H. J. Kim, “Aerial manipulation using a quadrotor
with a two dof robotic arm,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Nov 2013, pp. 4990–4995.

[6] F. Augugliaro, A. Mirjan, F. Gramazio, M. Kohler, and R. D’Andrea,
“Building tensile structures with flying machines,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Nov 2013,
pp. 3487–3492.

[7] F. Augugliaro and R. D’Andrea, “Admittance control for physi-
cal human-quadrocopter interaction,” in European Control Conference
(ECC), July 2013, pp. 1805–1810.

[8] K. Nitta, K. Higuchi, and J. Rekimoto, “HoverBall: Augmented sports
with a flying ball,” in Proceedings of the 5th Augmented Human
International Conference, ser. AH ’14. New York, NY, USA: ACM,
2014, pp. 13:1–13:4.

[9] A. E. Jimenez-Cano, J. Martin, G. Heredia, A. Ollero, and R. Cano,
“Control of an aerial robot with multi-link arm for assembly tasks,”
in IEEE International Conference on Robotics and Automation (ICRA),
May 2013, pp. 4916–4921.

[10] D. Wuthier, D. Kominiak, C. Kanellakis, G. Andrikopoulos, M. Fuma-
galli, G. Schipper, and G. Nikolakopoulos, “On the design, modeling and
control of a novel compact aerial manipulator,” in 24th Mediterranean
Conference on Control and Automation (MED), June 2016, pp. 665–670.

[11] B. Crowther, A. Lanzon, M. Maya-Gonzalez, and D. Langkamp, “Kine-
matic analysis and control design for a nonplanar multirotor vehicle,”
Journal of Guidance, Control, and Dynamics, vol. 34, no. 4, pp. 1157–
1171, Jul. 2011.

[12] G. Jiang and R. Voyles, “Hexrotor uav platform enabling dextrous
interaction with structures-flight test,” in IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), Oct 2013, pp. 1–6.

[13] E. Kaufman, K. Caldwell, D. Lee, and T. Lee, “Design and development
of a free-floating hexrotor uav for 6-dof maneuvers,” in IEEE Aerospace
Conference, March 2014, pp. 1–10.

[14] S. Rajappa, M. Ryll, H. H. Blthoff, and A. Franchi, “Modeling, control
and design optimization for a fully-actuated hexarotor aerial vehicle with
tilted propellers,” in IEEE International Conference on Robotics and
Automation (ICRA), May 2015, pp. 4006–4013.

[15] A. Nikou, G. C. Gavridis, and K. J. Kyriakopoulos, “Mechanical
design, modelling and control of a novel aerial manipulator,” in IEEE
International Conference on Robotics and Automation (ICRA), May
2015, pp. 4698–4703.

[16] S. Park, J. Her, J. Kim, and D. Lee, “Design, modeling and control of
omni-directional aerial robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct 2016, pp. 1570–1575.

[17] M. Ryll, H. H. Bülthoff, and P. R. Giordano, “Modeling and control of a
quadrotor uav with tilting propellers,” in IEEE International Conference
on Robotics and Automation (ICRA), May 2012, pp. 4606–4613.

[18] P. Segui-Gasco, Y. Al-Rihani, H. S. Shin, and A. Savvaris, “A novel
actuation concept for a multi rotor uav,” in International Conference on
Unmanned Aircraft Systems (ICUAS), May 2013, pp. 373–382.

[19] Y. Long and D. J. Cappelleri, Omnicopter: A Novel Overactuated Micro
Aerial Vehicle. Heidelberg: Springer International Publishing, 2013,
pp. 215–226.

[20] M. Ryll, D. Bicego, and A. Franchi, “Modeling and control of fast-
hex: A fully-actuated by synchronized-tilting hexarotor,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Oct
2016, pp. 1689–1694.

[21] D. Brescianini and R. D’Andrea, “Design, modeling and control of an
omni-directional aerial vehicle,” in IEEE International Conference on
Robotics and Automation (ICRA), May 2016, pp. 3261–3266.

[22] M. Cutler and J. P. How, “Analysis and control of a variable-pitch
quadrotor for agile flight,” Journal of Dynamic Systems, Measurement,
and Control, vol. 137, no. 10, pp. 101 002–1–101 002–14, Jul. 2015.

[23] R. W. Deters, G. K. Ananda Krishnan, and M. S. Selig, “Reynolds num-
ber effects on the performance of small-scale propellers,” in 32nd AIAA
Applied Aerodynamics Conference. American Institute of Aeronautics
and Astronautics, Jun. 2014.

[24] P. K. Aravind, “A comment on the moment of inertia of symmetrical
solids,” American Journal of Physics, vol. 60, no. 8, pp. 754–755, 1992.

[25] W. C. Durham, “Attainable moments for the constrained control allo-
cation problem,” Journal of Guidance, Control, and Dynamics, vol. 17,
no. 6, pp. 1371–1373, Nov. 1994.

[26] S. Kirby, “tgy – open source firmware for atmega-based brushless
escs,” 2017, [Online; accessed 11-December-2017]. [Online]. Available:
http://0x.ca/tgy/

[27] Contributors. of nuttx.org, “Nuttx documentation — nuttx real-
time operating system,” 2017, [Online; accessed 11-December-2017].
[Online]. Available: http://nuttx.org/doku.php?id=documentation

[28] B. W. McCormick, Aerodynamics, aeronautics, and flight mechanics.
Wiley New York, 1995, vol. 2.

[29] E.-C. Corporation., DC motors, speed controls, servo systems: an
engineering handbook. Oxford, Eng. ; Elmsford, N. Y.: Pergamon
Press, 1972.

[30] M. D. Shuster, “A survey of attitude representations,” Navigation, vol. 8,
no. 9, pp. 439–517, 1993.

[31] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics.
American Institute of Aeronautics and Astronautics, Inc., 2014.

[32] D. Brescianini and R. DAndrea, “Computationally efficient trajectory
generation for fully actuated multirotor vehicles,” IEEE Transactions on
Robotics, 2018.

[33] K. J. Aström and R. M. Murray, Feedback systems: an introduction for
scientists and engineers. Princeton University Press, 2010.

[34] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Quaternion-based
hybrid control for robust global attitude tracking,” IEEE Transactions
on Automatic Control, vol. 56, no. 11, pp. 2555–2566, Nov 2011.

[35] N. A. Chaturvedi, A. K. Sanyal, and N. H. McClamroch, “Rigid-body
attitude control,” IEEE Control Systems, vol. 31, no. 3, pp. 30–51, June
2011.

[36] H. Bang, M.-J. Tahk, and H.-D. Choi, “Large angle attitude control
of spacecraft with actuator saturation,” Control engineering practice,
vol. 11, no. 9, pp. 989–997, 2003.

[37] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and
R. DAndrea, “A platform for aerial robotics research and demonstration:
The flying machine arena,” Mechatronics, vol. 24, no. 1, pp. 41–54,
2014.

[38] M. Bangura, H. Lim, H. J. Kim, and R. Mahony, “Aerodynamic power
control for multirotor aerial vehicles,” in IEEE International Conference
on Robotics and Automation (ICRA), May 2014, pp. 529–536.



21

Dario Brescianini received the B.Sc. and the
M.Sc. degrees in mechanical engineering from ETH
Zurich, Zurich, Switzerland, in 2010 and 2013, re-
spectively. He received the Outstanding D-MAVT
Bachelor Award and was awarded the Willi-Studer
prize for the best Master’s degree in Robotics, Sys-
tems, and Control.

He is currently a doctoral candidate at the Institute
for Dynamic Systems and Control, ETH Zurich. His
main research interests include aerial vehicle design,
the control and trajectory generation of multirotor

vehicles, and learning algorithms.

Raffaello D’Andrea received the B.Sc. degree in
Engineering Science from the University of Toronto,
Toronto, ON, Canada, in 1991, and the M.S. and
Ph.D. degrees in Electrical Engineering from the
California Institute of Technology, Pasadena, CA,
USA, in 1992 and 1997, respectively.

He was an Assistant and then an Associate Pro-
fessor with Cornell University, Ithaca, NY, USA,
from 1997 to 2007. While on leave from Cornell
University, from 2003 to 2007, he cofounded Kiva
Systems, North Reading, MA, USA, where he led

the systems architecture, robot design, robot navigation and coordination, and
control algorithms efforts. He is currently a Professor of Dynamic Systems
and Control at ETH Zurich, Zurich, Switzerland, and chairman of the board
at Verity Studios AG, Zurich, Switzerland.


