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Abstract— This paper presents a path following controller for
quadrotors to follow splines in the output space. The control
pipeline includes utilization of a cascaded control architec-
ture, generation of paths using quintic spline interpolation,
transformation of coordinates using Frenet-Serret (FS) frames,
and decoupling controllers for the transversal and tangential
sub-systems. The result is a time-invariant controller that
renders the desired path invariant and attractive from arbitrary
initial conditions, even when thrown into the air (shown in
experiments), while maintaining a desired tangential velocity.

I. INTRODUCTION

This paper builds on the body of work pertaining to
path following of mechanical systems [1] [2] [3] [4] and
references therein. Path following is a broad term, and in
our context, we define it as the ability to drive a system’s
output to a desired path in space and traverse it at a required
tangential velocity. Such an objective could be achieved
by standard time varying trajectory tracking controllers (for
which a plethora of studies have already been done for the
quadrotor, see next paragraph), however properties such as
attractiveness of the path from arbitrary initial conditions or
invariance of the path (i.e. once on the path with velocity
tangential to it, the system will remain on the path for
all future time) can no longer be guaranteed [1] [2]. This
is guaranteed, however, by a set stabilization approach [3]
which, in this paper, yields a time-invariant controller. In
our path following context, the set that is to be stabilized
are the collection of all state trajectories whose associated
outputs lie on the desired path; this set is defined as the path
following manifold in [3]. Our approach towards stabilizing
this path following manifold is based on a well studied theory
of transverse feedback linearization [3] which, apart from
guaranteeing path invariance, also divides the control design
process into two separate, decoupled branches: make the out-
put approach the path and stay on it (transversal) and another
to achieve the desired motion on the path (tangential) [2].
This paper presents the experimental validation of employing
this control approach on quadrotors.

Within the realm of quadrotors, there have been a number
studies on trajectory tracking controllers since after mid
2000s. In [5][6], a nonlinear H∞ & backstepping controller
was employed for tracking a helical trajectory. In [7], a
feedback linearization law, linearizing the rotational and
translational dynamics, was used for trajectory (and point)
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tracking. Additionally, other forms of trajectory tracking
controllers based on adaptive control, sliding mode control,
predictive and nonlinear robust control have been studied
([7] [8] and references therein). However, trajectory tracking
involves a reference trajectory being parametrized in space
as well as time which may not be suitable when spatial errors
are more critical than temporal errors [1]. On the contrary,
path following involves a time-free parametrization of the
reference path. In [9], path following was achieved by allow-
ing the quadrotor to pursue, without intercepting, a virtual
target moving on the path. In this technique, the convergence
towards the path was found to be highly sensitive to initial
conditions and vehicle velocity. In fact, this approach, as
well as other contour error mitigation strategies (typically
used in the machining community), does not guarantee that
the desired path will be invariant [4]. The approach in this
paper is insensitive to initial conditions, and is shown in
experiments by throwing the quadrotor in the air.

In [8] and [10], a path following controller for quadrotors
based on transverse feedback linearization is presented. They
utilize input dynamic extension, augmenting two additional
states, in order for the system output to achieve a well
defined vector relative degree, and was shown in simulation.
Their approach requires the inversion of a 4x4 matrix and is
limited to a relatively simple class of paths such as circles.
In this paper, this requirement is reduced to inverting a 3x3
matrix (a marginal improvement in computation) owing to
a cascaded control architecture [11], explained briefly in
Section II-B, which avoids the need of employing input
dynamic extension. This gives the added advantage of being
able to integrate the proposed path following controller with
standard flight controllers that have on-board attitude and
acceleration control12. The path following routine presented
here draws motivation from [4], where a transformation of
the state coordinates is done using Frenet-Serret (FS) frames
[12] to achieve a time-invariant, path-following controller
(PFC) for a large class of paths: spline interpolation of
way-points. In this paper, the PFC produces, as its output,
the required body acceleration and body-rate feed-forward
(parametrized by state, not in time) for the quadrotor in order
to follow a reference path with a user defined velocity.

The remainder of this paper is organized as follows:
Section II briefly explains the system model and the cascaded
control architecture. Section III describes the path following
problem and Section IV describes the PFC design. Section
V show experimental results from various initial conditions.
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Finally, some conclusions and ideas for future works have
been proposed in Section VI.

Notation

Let 〈p, q〉 denote the standard inner product of vectors p
and q in Rn. The Euclidean norm of a vector p is denoted by
‖p‖. The derivative of p with respect to time is represented
by ṗ and the derivative with respect to path parameter is
represented by p′.

II. SYSTEM MODEL

A. Quadrotor Dynamics

The quadrotor is modelled as a rigid body with six degrees
of freedom. The position of the center of mass of the
quadrotor xp = (xp1,xp2,xp3) in 3D cartesian coordinates and
the euler angles q = (φ ,θ ,ψ) := (roll, pitch,yaw) represent
the translational and rotational degrees of freedom [13]. The
translational acceleration in the inertial frame is given by
[14]:

a =

ẍp1
ẍp2
ẍp3

= R(q)

0
0
T

−
0

0
g

 (1)

where R(q) is the rotation matrix which rotates a vector in the
body frame to inertial frame, g= 9.81m/s2 is the acceleration
due to gravity and T is the mass normalized collective thrust
of the four propellers. As for the body rate ω = (ωx,ωy,ωz),
the commanded body rates ωcmd are tracked by the onboard
controller which feedback linearizes the nonlinear rotational
dynamics [14]. The relation between angular angle rate q̇
and body rate ω is given by:

Jrq̇ = ω (2)

Jr =

1 0 −sinθ

0 cosφ sinφ cosθ

0 −sinφ cosφ cosθ

 (3)

B. Control Architecture and System Dynamics

A cascaded control architecture as shown in Fig. 1 was
used for quadrotor control. The cascaded control structure is
a commonly used concept and has already been studied for
quadrotor control [11] [15] [16]. In this paper, the design of
the PF controller is discussed (Section IV). It is assumed that
dynamics of the inner control loops comprised of attitude
controller [17], onboard controller and quadrotor [11] are
fast enough such that the combined system plant behaves as
a simple double integrator with acceleration ades as direct
input, along with body rate feed-forward input ω f f and
desired yaw ψdes. The following state and output equations
are considered for this system.

State x = [xp xv]
T ∈ R6

where xv := ẋp

With acceleration a ∈R3 as control input, this results in the
following linear dynamics:

ẋ = Ax+Ba (4)

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , B =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


The output of system (4) is defined as:

y = h(x) = xp ∈ R3 (5)

III. PROBLEM FORMULATION

A. Reference Path

For the reference path, we consider a parametrized curve:

σ( ·) : [0,λmax]→ R3,

Given a λmax ∈R, this reference path can be represented by
the set embedded in the output space:

P := σ([0,λmax])⊂ R3 (6)

Assumption (framed curves) : For all λ ∈ [0,λmax], σ ′(λ ),
σ ′′(λ ), σ ′′′(λ ) are linearly independent (all derivatives are
with respect to the parameter λ ).
This assumption allows for the Frenet-Serret Frames of the
path, discussed in Section IV-A, to be well defined [4] in the
output space R3.
Remark: In practice, the path is generated by quintic spline
interpolation (see Section V). The framed curves assumption
is a relatively weak assumption since when quintic spline
interpolating, the probability of the first three path derivatives
being linearly dependent in a non-trivial sub-interval of
[0,λmax] is zero (loosely speaking) [4].

B. Problem Statement

The problem investigated in this paper is to find a con-
tinuous time-invariant feedback control law for ades, ω f f
and ψdes for the quadrotor system (Fig. 1) resulting in
the system output (5) exponentially approaching the given
path P and traversing along the path with a user-defined
constant reference tangential velocity η

re f
2 . This control law

also has to ensure path invariance (at any time instant
t = 0 if output y(0) ∈P , then y(t) ∈P ∀t > 0) and path
attractiveness (y(t)→P , ∀y(0) 6∈P). This will be done via
set stabilization to yield the required PF controller block in
Fig. 1.

IV. PATH FOLLOWING CONTROLLER DESIGN

The proposed PF controller requires the path parameter
λ ∗ which correspond to a point on the path closest to the
current system output y = h(x). This λ ∗ can be defined as:

λ
∗ = s(x) := arg min

λ∈[0,λmax]
‖h(x)−σ(λ )‖ (7)

At t = 0, this parameter is computed by quantizing the path
and searching for the closest point in a brute-force fashion.
For t > 0, the adaptive gradient descent algorithm in [4] is
used. The algorithm implementation in [4] also works on
self-intersecting curves.
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Fig. 1. Cascaded quadrotor control architecture

Frenet-Serret Frame

The Frenet-Serret Frame (FSF) at a point on the path
is an orthonormal basis formed from tangent, normal and
binormal unit vectors at that point of the path. Projections
on these unit vectors defined on the reference path, as shown
in Fig. 2, are used to represent transformed states discussed
in Section IV-A. Interested readers are referred to [12] and
[18] for further technical details about FSF. In this paper, the
following expressions are used for these vectors. Here, the
unit-tangent, unit-normal and unit-binormal FSF vectors are
represented by t, p and b respectively [18]:

t(λ ) =
σ ′(λ )

‖σ ′(λ )‖

p(λ ) =
t ′(λ )
‖t ′(λ )‖

b(λ ) = t(λ )× p(λ )

d
dλ

 t
p
b

= ‖σ ′(λ )‖

 0 κ 0
−κ 0 τ

0 −τ 0

 t
p
b

 , λ ∈ [0,1]

where, κ =
‖σ ′(λ )×σ ′′(λ )‖
‖σ ′(λ )‖3 , τ =

[σ ′(λ ),σ ′′(λ ),σ ′′′(λ )]

‖σ ′(λ )×σ ′′(λ )‖2

(8)

y=h(x)

σ(λ ∗)

t(λ ∗)

p(λ ∗)

b(λ ∗)

ξ1

ϕ1

σ(0)

η1

Fig. 2. Frenet-Serret Frames, tangential position η1 and transversal
positions {ξ1,ϕ1}

A. Coordinate Transformation

In the first step towards PF controller design, a coordi-
nate transformation T is constructed that maps the state x

of system (4) to a new set of well-separated coordinates
representing the position and velocity of the quadrotor along
the reference path (tangential) and towards the reference path
(transversal).

1) Tangential States: The first tangential state η1 (tan-
gential position) is the arclength traversed along the path,
i.e. path arclength between σ(0) and σ(λ ∗) defined as:

η1(x) :=
∫

λ ∗

0

∥∥∥∥dσ(r)
dr

∥∥∥∥dr (9)

The second tangential state η2 (tangential velocity) is com-
puted by taking time derivative of η1. It turns out η2 is the
projection of the quadrotor velocity xv onto unit-tangent FS
vector eq(8) [4].

η2(x) := η̇1 = 〈t(λ ∗),xv〉 (10)

2) Transversal States: As shown in Fig. 2, the transver-
sal positions (ξ1 and ϕ1) are the projection of transversal
distance from the reference path, that is h(x)−σ(λ ∗), on
the unit-normal and unit-binormal FS vectors (8). Taking
their time derivatives gives the other two transversal states
(transversal velocities, ξ2 and ϕ2) [4]:

ξ1(x) := 〈p(λ ∗),h(x)−σ(λ ∗)〉 (11)

ξ2(x) := ξ̇1 =
η2

‖σ ′(λ ∗)‖
〈p′(λ ∗),h(x)−σ(λ ∗)〉+ 〈p(λ ∗),xv〉

(12)
ϕ1(x) := 〈b(λ ∗),h(x)−σ(λ ∗)〉 (13)

ϕ2(x) := ϕ̇1 =
η2

‖σ ′(λ ∗)‖
〈b′(λ ∗),h(x)−σ(λ ∗)〉+ 〈b(λ ∗),xv〉

(14)

B. Dynamics in the Transformed Coordinates

The dynamics in the transformed coordinates can be
written as:

η̇1 = η2

η̇2 = α1(x)+β1(x)a

ξ̇1 = ξ2

ξ̇2 = α2(x)+β2(x)a

ϕ̇1 = ϕ2

ϕ̇2 = α3(x)+β3(x)a

(15)



where

α1(x) =
η2

‖σ ′(λ ∗)‖
〈t ′(λ ∗),xv〉

β1(x) = t(λ ∗)>

α2(x) =
η2

‖σ ′(λ ∗)‖
〈p′(λ ∗),2xv−η2(x)t(λ ∗)〉+〈

h(x)−σ(λ ∗), p′′(λ ∗)
(

η2

‖σ ′(λ ∗)‖

)2

+

p′(λ ∗)
(

α1(x)
‖σ ′(λ ∗)‖

−η
2
2 (x)
〈σ ′(λ ∗),σ ′′(λ ∗)〉
‖σ ′(λ ∗)‖4

)〉
β2(x) = p(λ ∗)>+(h(x)−σ(λ ∗))>p′(λ ∗)

β1(x)
‖σ ′(λ ∗)‖

α3(x) =
η2

‖σ ′(λ ∗)‖
〈b′(λ ∗),2xv−η2(x)t(λ ∗)〉+〈

h(x)−σ(λ ∗),b′′(λ ∗)
(

η2

‖σ ′(λ ∗)‖

)2

+

b′(λ ∗)
(

α1(x)
‖σ ′(λ ∗)‖

−η
2
2 (x)
〈σ ′(λ ∗),σ ′′(λ ∗)〉
‖σ ′(λ ∗)‖4

)〉
β3(x) = b(λ ∗)>+(h(x)−σ(λ ∗))>b′(λ ∗)

β1(x)
‖σ ′(λ ∗)‖

(16)

where λ ∗= s(x) from equation (7) and FS vectors derivatives
are given in equation (8). The reader can refer to [4] for the
derivation of above expressions3.

C. Transverse Feedback Linearization (TFL)

Directly following from the definition of ξ1 and ϕ1, lift of
the path σ to the state space R6 can be defined as:

Γ := {x ∈ R6 : ξ1(x) = 0,ϕ1(x) = 0} (17)

The set Γ is the set of all x ∈ R6 which correspond to
the system output y lying in the set P (6). Under the
system dynamics (4) Γ is not invariant and hence cannot be
stabilized. Thus we instead stabilize the largest controlled
invariant set Γ∗ contained in Γ. This set is called the path
following manifold of (4) with respect to P . This set consists
of all the motions of system (4) for which the system output
y remains in P by suitable choice of control input a.
Equivalently Γ∗ can be thought of as zero dynamics manifold
[19] of (4) with output (ξ1(x),ϕ1(x)).

Γ
∗ := {x ∈ R6 : ξ1(x) = 0, ξ̇1(x) = 0,ϕ1(x) = 0, ϕ̇1(x) = 0}
= {x ∈ R6 : ξ1(x) = 0,ξ2(x) = 0,ϕ1(x) = 0,ϕ2(x) = 0}

(18)

Therefore, the following virtual output is considered:

ŷ :=

η1(x)
ξ1(x)
ϕ1(x)

 (19)

3In [4], there is an error on page 1383: the term
LgL f η1(x)
‖σ ′(λ∗)‖ in L2

f ξ
j−1

1 (x)

should be
L2

f η1(x)
‖σ ′(λ∗)‖ .

It can be observed in (15) and (16) that this virtual output has
a vector relative degree of {2,2,2} for all x ∈ R6 [4]. Thus
an input-output feedback linearization can be performed by
defining the map T as:

T : U ⊆ R6→ T (U)⊆ R6

x 7→ (η1(x),η2(x),ξ1(x),ξ2(x),ϕ1(x),ϕ2(x))
(20)

The dynamics in these new coordinates have been defined in
Section IV-B. Observing the structure of the dynamics (15),
an auxiliary input u=

[
uη uξ uϕ

]> ∈R3 is defined such that

u = β (x)a+α(x) (21)

where

β (x) =

β1(x)
β2(x)
β3(x)

 , α(x) =

α1(x)
α2(x)
α3(x)

 (22)

The new dynamics with auxiliary input are thus simplified
into the following linearized system:

η̇1 = η2
η̇2 = uη

}
Tangential subsystem

ξ̇1 = ξ2

ξ̇2 = uξ

ϕ̇1 = ϕ2
ϕ̇2 = uϕ

Transversal subsystem

The ξ and ϕ subsystems describe the motion off the set
Γ∗ and thus represent transversal dynamics. Stabilizing this
transversal subsystem is equivalent to enforcing Γ∗ attractive
and controlled invariant, thereby rendering the same for the
path P in the output space. A simple linear controller for
transversal control input (uξ ,uϕ ) can be used to stabilize the
origin of this subsystem. Similarly a separate linear controller
can be used for tangential control input uη for the tangential
subsystem to track a desired tangential velocity η

re f
2 .

The well-defined relative degree of the chosen virtual
output ŷ (19) at all x ∈ R6 also guarantees the feedback
transformation (21) to be regular [3], that is, β (x) being
non-singular for all x ∈ R6. The desired acceleration input
ades for the quadrotor system (Fig. 1) is then calculated:

ades = β (x)−1(u−α(x)) (23)

D. ω f f and ψdes Computation

In this subsection body rate feed-forward input ω f f and
desired yaw input ψdes are computed to be sent to the inner
control loops (Fig. 1). From equation (1), the total mass-
normalized forces required by the quadrotor to follow the
reference path is given by:

f := a+

0
0
g

= R(q)

0
0
T

 (24)

From [20], the body rates ωx and ωy are expressed as: ωy
−ωx

0

= R(q)T
(

ȧ
‖ f‖
− f f T ȧ
‖ f‖3

)
(25)



In principle, when the system output is tracking the reference
path at the desired rate η

re f
2 while remaining on the path, then

x ∈ Γ∗, η2 = η
re f
2 and u = 0. In this case, taking the time

derivative of equation (21) yields:

0 = β (x)ȧ+
dβ (x)

dt
a+

dα(x)
dt

⇒ ȧ =−β (x)−1
(

dβ (x)
dt

a+
dα(x)

dt

)
(26)

where a=−β (x)−1α(x) from equation (23). Additionally, in
this case, dβ (x)

dt and dα(x)
dt are found by differentiating (16)

with respect to time:

dβ1(x)
dt

∣∣∣∣
x∈Γ∗

= t ′(λ ∗)
dλ ∗

dt
dβ2(x)

dt

∣∣∣∣
x∈Γ∗

= p′(λ ∗)
dλ ∗

dt
dβ3(x)

dt

∣∣∣∣
x∈Γ∗

= b′(λ ∗)
dλ ∗

dt

dα1(x)
dt

∣∣∣∣
x∈Γ∗

= η2

(
d‖σ ′(λ ∗)‖−1

dλ ∗
dλ ∗

dt

)
t ′(λ ∗)T xv

+
η2

‖σ ′(λ ∗)‖

[(
t ′′(λ ∗)

dλ ∗

dt

)T

xv + t ′(λ ∗)T a

]
dα2(x)

dt

∣∣∣∣
x∈Γ∗

= η2

(
d‖σ ′(λ ∗)‖−1

dλ ∗
dλ ∗

dt

)
p′(λ ∗)T (2xv

−η2t(λ ∗))+
η2

‖σ ′(λ ∗)‖

[(
p′′(λ ∗)

dλ ∗

dt

)T

(2xv

−η2t(λ ∗))+ p′(λ ∗)T
(

2a−η2t ′(λ ∗)
dλ ∗

dt

)]
dα3(x)

dt

∣∣∣∣
x∈Γ∗

= η2

(
d‖σ ′(λ ∗)‖−1

dλ ∗
dλ ∗

dt

)
b′(λ ∗)T (2xv

−η2t(λ ∗))+
η2

‖σ ′(λ ∗)‖

[(
b′′(λ ∗)

dλ ∗

dt

)T

(2xv

−η2t(λ ∗))+b′(λ ∗)T
(

2a−η2t ′(λ ∗)
dλ ∗

dt

)]
(27)

where λ ∗ = s(x) (7), dλ ∗
dt = η2

‖σ ′(λ ∗)‖ [4], and d‖σ ′(λ ∗)‖−1

dλ ∗ =

−〈σ
′(λ ∗), σ ′′(λ ∗)〉
‖σ ′(λ ∗)‖3 . Thus, by substituting (24), (26) and (27)

in (25), ωx and ωy are computed considering that the system
output is on the reference path (x ∈ Γ∗) while tracking
the desired tangential velocity (η2 = η

re f
2 )4. Furthermore,

we consider a user defined yaw specification which is
parametrized by displacement on the path, i.e. η1 [8]:

ψdes = ψ(η1)

⇒ ψ̇des =
∂ψ(η1)

∂η1

dη1

dt
=

∂ψ(η1)

∂η1
η2

4This procedure can be extended to any x ∈R6, however the expressions
for dβ (x)

dt and dα(x)
dt will become excessively complicated.

xp,xv
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Fig. 3. Quadrotor path following controller block diagram

The euler angles (φ , θ and ψ) can be computed from (1),
and ωx, ωy and ψ̇ are computed as above. Thus, from (2) we
get 3 linear equations and 3 unknown variables φ̇ , θ̇ and ωz
⇒ ωz is computed by solving this system of linear equations.
Hence, the required body rate feed-forward input is obtained
as a function of the state x:

ω f f =

ωx
ωy
ωz

= ω f f (x), for x ∈ Γ
∗, η2 = η

re f
2 (28)

A summary of the proposed path following control design is
in Fig. 3.

V. EXPERIMENTAL RESULTS

In this section the experimental results obtained by im-
plementing the proposed path following controller on a
quadrotor are discussed. The experiments were performed
in the Flying Machine Arena at ETH Zurich. A closed curve
made from spline-interpolating 7 way-points is used as the
reference path. The path also has a self intersection point as
seen in Fig. 4. A constant yaw angle (ψdes = 0) is considered.
Using loop shaping techniques the band-width and damping
ratio for the transversal controller are set to 6 Hz and 0.7,
and that for the tangential controller are set to 4 Hz and 0.8
respectively.

A. Varying initial position (initial velocity = 0)

In Fig. 4, system output evolution with 5 different initial
positions, all starting from rest (initial velocity = 0) are
shown. This demonstrates the path attractiveness and path
invariance nature of the proposed path following controller.
Fig. 5 shows the evolution of tangential states η1 and η2

when the quadrotor moves along the closed reference path
(PF1 in Fig. 4), starting from initial position (0,−1.5,2)
at rest. It can be observed that the quadrotor tracks the
desired tangential velocity of −1.5m/s while following the
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reference path. In η2 plot, small ripples are observed between
8−10s and 22−24s time spans. A potential cause for this
is the unmodelled vortex ring state that occurs when the
quadrotor moves downwards, leading to an inaccurate thrust
model assumed by the inner control loop. Furthermore, the
evolution of transversal states ξ and ϕ during the experiment
can be seen in Fig. 6 in the same PF1 experiment initial
conditions as mentioned above. As observed in this figure,
the convergence of transversal states to 0 reaffirms the path
attractiveness nature of this path following controller.

B. Varying initial position and velocity (thrown experiments)
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Fig. 7. Thrown experiments : Path following with different initial positions
and different initial velocities (speed values shown in the legend are the
magnitude of velocities when path following controller gets activated, i.e.
quadrotor reaches the activation height of 2m for PF1, PF2 and PF3; 4m
for PF4 and PF5), η

re f
2 = 1.5m/s2

In these experiments the quadrotor is randomly thrown
in the air and the implemented path following controller is
activated only when it reaches a user-defined height. Fig. 7
shows 5 such thrown experiments. Again, this demonstrates
the path attractiveness and path invariance nature of the
controller even with radically different initial conditions
(initial position as well as initial velocity). Fig. 8 and
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Fig. 8. Tangential states evolution for PF5 (thrown experiment)
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Fig. 9. Transversal states evolution for PF5(thrown experiment)

Fig. 9 show the evolution of tangential and transversal states
respectively during PF5 thrown experiment (in Fig. 7). It can
be observed from Fig. 8 that the quadrotor started with a non-
zero tangential velocity (≈ 3.5m/s) but finally tracked the
desired η

re f
2 = 1.5m/s. Similarly in Fig. 9, it is observed that

the transversal states are stabilized as expected. Again in this
case some ripples can be seen in the η2 plot in Fig. 8 possibly
due to the similar reason as mentioned in the previous case.

VI. CONCLUSION

A path following controller is presented for quadrotors
using a cascaded control architecture that stabilizes the set
associated with the lift of the curve to the state space. The
approach is shown for general paths that can be generated via
spline interpolation. Associated body rate commands are also
generated for when the vehicle is on the path and tracking
the desired tangential reference speed. The controller is also
time-invariant, as the commanded body rate feed forward
signals and acceleration signals are parameterized by state
and not in time.

The applications for such work can be in situations where
spatial errors are more critical than temporal errors for
an aerial vehicle. This could consist of surveillance and
inspection applications.

In the future, one could extent the body rate signal
generation to be valid for any state of the system, not
just when path tracking is achieved. Furthermore, iterative
learning can be done to improve the performance of the
system. It would be interesting to generate a learned signal
that is also parameterized by state and not in time, which
can be cast into the path following framework presented in
this work.
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