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Abstract: Ultra-wideband radio networks enable low-cost, low-computation robot localization
in semi-structured environments; however, previous results have shown that these localization
systems suffer from spatially-varying measurement biases, leading to a spatially-varying offset
between the physical and the estimated position. In tasks where absolute positioning or high
tracking accuracy is required, this offset can lead to failure of the task. This paper proposes
augmenting ultra-wideband-based localization with visual localization to improve estimation
accuracy for critical tasks. It also presents a control strategy that takes the camera measurement
process into account, and allows the ultra-wideband system’s measurement biases to be learned
and compensated over multiple executions of the task. This bias compensation can be used
to improve the accuracy of the task in the case of visual impairment. The effectiveness of the
proposed framework is demonstrated by accurately flying a quadrocopter to a landing platform
using on-board estimation and control.

Keywords: Flying robots, Perception and sensing, Information and sensor fusion, Motion
control systems, Non-linear predictive control

1. INTRODUCTION

Recent progress in low-cost, low-computation indoor local-
ization using ultra-wideband (UWB) radio networks has
enabled the use of drones in indoor environments. How-
ever, UWB localization systems have been shown to suffer
from spatially-varying measurement biases (Ye et al., 2010;
Prorok and Martinoli, 2014), which can lead to a spatially-
varying offset between the physical and the estimated
position (Mueller et al., 2015; Ledergerber et al., 2015).
In applications requiring drones to accurately perform
maneuvers, for example, a maneuver to land on a charging-
station or on a package in a warehouse, this offset can lead
to failure.

In this paper, we augment a quadrocopter flying in a
UWB localization system with an onboard camera and
demonstrate that the camera enables the accurate exe-
cution of a landing maneuver. The combination of UWB
localization and onboard vision is advantageous: absolute
position, in our system with an accuracy of ±25cm, can
be obtained from UWB measurements quickly and with
a low computational cost; meanwhile, the onboard vision
sensor provides improved local accuracy if the task requires
it. This is in comparison with existing methods of indoor
localization, such as visual localization, which require sig-
nificant processing, and may not provide accurate posi-
tioning information in situations where the configuration
and visual state of the environment is constantly changing,
for example in modern, robotic warehouses (e.g. Wurman
et al. (2007)).

Using computer vision to assist with drone maneuvers
has been the focus of considerable research. One example
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Fig. 1. An overview of the system presented in this paper.
The quadrocopter localizes itself based on UWB range
measurements with an accuracy of ±25cm. This is too
inaccurate to successfully perform a landing maneu-
ver. The quadrocopter therefore relies on camera mea-
surements for additional accuracy during the land-
ing maneuver. A control strategy was developed that
takes into account the camera measurement process.
This control strategy further allows the UWB biases
to be learned over multiple maneuvers, allowing an
accurate trajectory to be tracked by the UWB system
in the case of temporary visual impairment.

of early work on this topic is Amidi et al. (1999), who
applied visual odometry to improve the performance of
autonomous helicopters. More recent publications, e.g.
Faessler et al. (2014); Lange et al. (2009); Yang et al.
(2013); Wenzel and Zell (2009) extend this work specifi-
cally for take-off and landing maneuvers. In addition, many
recent consumer drones (e.g. the Parrot AR.Drone and the
DJI Mavic drone) use computer vision to stabilize motion.

This paper leverages this research, employing an approach
based on planar artificial markers for vision-based state



estimation during a landing maneuver. While such an
approach was also chosen by Benini et al. (2013) to aug-
ment a UWB localization system with visual localization,
the main contributions of this paper are found in the
extensions of their work, namely the control strategy devel-
oped specifically for this kind of state estimation, as well
as the framework used to compensate the biases of the
UWB localization system during a maneuver. This bias
compensation can be used to improve the accuracy of the
landing maneuver in the case of visual impairment. Fig. 1
illustrates the landing procedure discussed in this paper,
where trajectories are generated such that the onboard
camera faces a known pattern next to the landing site and
the UWB biases are learned along these trajectories.

The paper is structured as follows: Section 2 provides a
brief overview of the camera-based state estimator and
Section 3 lays out the dynamics of the quadrocopter. In
Section 4, a control strategy is presented which takes
the camera measurement process into account. Section 5
explains how the sensor measurements can be combined
to learn and compensate for the biases of the UWB local-
ization system, allowing a trajectory to be tracked in the
case of temporary visual impairment. Finally, Section 6
presents details of the implementation and discusses ex-
perimental results.

2. VISION-BASED POSE ESTIMATION

This section describes the estimation of the quadrocopter’s
pose from the image of a known pattern placed near the
landing platform.

Camera model A pinhole model is used to describe the
image formation process, as shown in Fig. 2. Assuming the
camera has been calibrated (e.g. as described by Zhang
(2000)), a point p = (x, y, z) in the world projected onto
the camera’s sensor plane results in the pixel measurement[

u
v

]
= Φ (p, TCW) , (1)

where TCW ∈ SE(3) is the pose of the camera’s center
relative to the inertial frame, and where Φ(·, ·) is the
calibrated, non-linear projection function as described in
Hartley (2000) and Szeliski (2010).

Fig. 2. Representation of the pinhole camera model. A
point p is projected onto the sensor plane resulting in
the pixel measurement (u, v). The pose of the camera
is encoded via the transformation TCW.

Pose estimation Given a set of points P, where point
i ∈ P has the known location pi relative to the iner-
tial frame, and measured pixel coordinates (ui, vi), the
camera’s pose TCW relative to the inertial frame can be
estimated by solving the following non-linear least squares
problem

min
TCW

∑
i∈P

∥∥∥∥[uivi
]
− Φ (pi, TCW)

∥∥∥∥2

, (2)

where ‖ · ‖ is the Euclidean norm. If the points are in
the same plane, an initial guess for the pose can be found
by calculating the parameters of the homography relating
the points in the world and the pixel measurements. The
pose of the quadrocopter in the inertial frame can then
be estimated as TBW = TBCTCW, where TBC ∈ SE(3) is
the known transformation from the camera’s center to the
quadrocopter’s body frame.

For simplicity, our implementation (Section 6) is based on
a blob-detection approach, whereby the landing platform
is marked by a pattern (as shown in Fig. 1), whose known
layout and projection on the camera’s sensor provides
the information required for (2). The main limitation is
that the pattern must be visible at all times and the
method is therefore sensitive to occlusions. However, as we
later discuss in Section 5, by learning and compensating
for the UWB network’s spatially-varying biases along the
landing trajectory, position estimates derived from the
UWB network can help ensure accurate tracking during
periods of temporary visual impairment, e.g. due to marker
occlusion or motion blur.

The accuracy of the resulting pose estimate can be quanti-
fied by means of backward transport of covariance (Hart-
ley, 2000, pp. 138-150). For the planar pattern depicted in
Fig. 1, the accuracy improves when the angle with respect
to the pattern normal is increased.

3. DYNAMICS AND STATE ESTIMATION

We assume the quadrocopter is a rigid body of mass m
able to produce a positive thrust f along its body’s z-axis.
The body’s angular rates are defined in the body frame
as ω = (ω1, ω2, ω3), where the notation (x, y, z) is used
to succinctly express elements of a vector. We define the
quadrocopter to have position x(t) ∈ R3, relative to the
inertial frame, and an orientation RWB(t) ∈ SO(3), which
expresses a rotation from the quadrocopter’s body frame
to the inertial frame. The continuous-time quadrocopter
dynamics are then given by

ẍ = RWB
e3f

m
+ g

ṘWB = RWB[[ω]]×,
(3)

where g = (0, 0,−g) is the acceleration due to gravity,
e3 = (0, 0, 1) and [[ω]]× is the matrix form of the cross
product, defined as

[[ω]]× =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
. (4)

We use the angular rates ω and the thrust f as control
inputs (see Fig. 3) and assume that they can be controlled
without delay. This assumption is reasonable, since the



motors’ time constants are much smaller than those of the
other dynamics.

In an approach similar to Augugliaro et al. (2012), the
dynamics (3) are discretized for state estimation and
trajectory generation (Section 4). We define the discrete-
time state of the quadrocopter at discrete-time index k
as q[k] = (x[k],v[k],RWB[k]), where x[k] ∈ R3 and
v[k] ∈ R3 are respectively the position and velocity of
the quadrocopter expressed in the inertial frame, and
where RWB[k] ∈ SO(3) expresses a rotation from the
quadrocopter’s body frame to the inertial frame. Note
that the quadrocopter’s body rates ω are not included
in the state, since they are used as inputs to the system.
Discretization for the fixed sampling period ∆t, assuming
a zero-order input hold, then yields

x[k + 1] ≈ x[k] + v[k]∆t

+ RWB[k]∆t2
(

1

2
I +

1

6
∆t[[ω[k]]]×

)
e3
f [k]

m

+
1

2
g∆t2,

v[k + 1] ≈ v[k] + RWB[k]∆t

(
I +

1

2
∆t[[ω[k]]]×

)
e3
f [k]

m

+ g∆t,

RWB[k + 1] = RWB[k]exp([[ω[k]]]×∆t),
(5)

where the first order approximation

exp([[ω[k]]]×∆t) ≈ I + [[ω[k]]]×∆t (6)

was used to discretize the updates of x and v. The
discrete-time acceleration a[k] ∈ R3 in the inertial frame
is therefore given by

a[k] = RWB[k]
e3f [k]

m
+ g. (7)

An extended Kalman filter, similar to the filter described
in Mueller et al. (2015), is used to track the state of
the quadrocopter. Gyroscope and accelerometer measure-
ments enter directly as inputs in the process update step,
while camera pose estimates are used as measurement
updates.

4. LANDING MANEUVER

As previously discussed, the state estimator relies on the
camera’s pose estimate, calculated based on the image of
the blob pattern. This results in an additional constraint
on the planned trajectory in order to ensure that the
camera faces the pattern. In this section, we formulate
the generation of landing maneuvers as an optimization
problem including the quadrocopter’s dynamics and the
camera orientation constraint, and discuss how these tra-
jectories can be tracked by means of a non-linear model
predictive control (MPC) problem.

4.1 Trajectory Generation and Tracking

We express the trajectory generation problem as an op-
timization problem over the finite time-horizon N , and
solve for the control inputs ω[k] and f [k] at each time
step k = 0, . . . , N − 1. This formulation allows a smooth
trajectory to be obtained by minimizing the jerk of the
trajectory, while ensuring that the discrete-time dynamics
(5) are fulfilled.

Fig. 3. Model of the quadrocopter. The inputs are the
angular rates ω1, ω2, ω3, and thrust f . The vector
ecam (blue) describes the orientation of the rigidly-
mounted camera with respect to the quadrocopter’s
body frame, and the vector epat (red) is defined to
point from the center of the pattern to the center of
the camera.

Furthermore, defining ecam as the unit-vector expressing
the orientation of the rigidly-mounted camera with respect
to the quadrocopter’s body frame, and epat as the unit
vector pointing from the pattern to the camera’s center
(see Fig. 3), we additionally penalize deviation of the
camera’s orientation from the pattern’s center by including
the dot-product RWB[k]ecam and epat. This term reaches
its minimum of -1 when the vectors are facing each other.
This results in the optimization problem

minimize α

N−2∑
k=0

∣∣∣∣∣∣∣∣a[k + 1]− a[k]

∆t

∣∣∣∣∣∣∣∣2
+ (1− α)

N∑
k=1

(RWB[k]ecam)
T

epat[k]

subject to fmin ≤ f [k] ≤ fmax, k = 0, . . . , N − 1

ωmin ≤ ω[k] ≤ ωmax, k = 0, . . . , N − 1

q[0] = qinit, q[N ] = qfinal

(8)

with α ∈ [0, 1] a weight factor and qfinal the desired final
state defined up to the quadrocopter’s yaw, which is left
as a free state. The control inputs are subject to box
constraints. This results in 4N optimization variables with
nine equality constraints and 8N inequality constraints.
Note that due to the problem formulation, the discrete
dynamics of Section 3 are contained in the objective
function and are not used as constraints. Also note that
the initial conditions are fulfilled by definition.

The initial position of the maneuvers is chosen to ensure
a sufficient angle with respect to the pattern normal. As
described in the previous section, this results in more
accurate camera pose estimates throughout the trajectory.

This non-linear optimization problem can be solved using
sequential quadratic programming (Nocedal and Wright,
2006) where the non-convex objective function and con-
straints are iteratively approximated by quadratic and
affine functions, resulting in a convex optimization prob-
lem that can be solved in real time by the quadrocopter’s
onboard processor (Section 6).

The resulting optimal control inputs define a trajectory
which could be supplied as a reference to a standard
trajectory-tracking controller. However, instead of focus-
ing on the camera pointing constraint, too much control
effort might be dedicated to tracking the trajectory, which



could result in the camera losing sight of the pattern in
the case of a deviation from the planned trajectory.

In order to maintain camera-pattern alignment through-
out the trajectory, a non-linear model predictive control
approach was chosen, in which the optimization problem is
solved every 20ms starting from the current state estimate.
The resulting control inputs are then applied to the system
until a new solution becomes available (as in, e.g. Hehn
and D’Andrea (2011)). While the number of time steps
N is held constant throughout the maneuver to keep the
computational cost similar, the time allocated for each
new trajectory is reduced by the time elapsed since the
beginning of the maneuver resulting in a decreasing time
step length ∆t along the maneuver.

5. UWB BIAS ESTIMATION

While the camera provides a good pose estimate when
facing the pattern, it is sensitive to illumination conditions
and visual impairment. In the previous sections we have
discussed the generation of landing maneuvers based on
visual localization. In this section we derive a framework
to learn the spatially-varying biases of the UWB measure-
ments. These biases can be used to compensate the mea-
surements during future maneuvers. Thus, the accuracy of
the UWB localization system is improved, adding a layer
of robustness against temporary visual impairment.

Mueller et al. (2015) present a UWB localization system
capable of measuring the distance between an antenna on
the quadrocopter and fixed antennas on the ground, known
herein as anchors. Mueller et al. (2015) note that each
range measurement appears to have a systematic, spatially
varying bias; however, as this bias is unobservable without
a secondary localization system, it is not included in their
measurement model. Having augmented the quadrocopter
with a visual localization system able to provide accurate
and absolute pose estimates, this paper is able to extend
the system of Mueller et al. (2015) by additionally consid-
ering the bias in the range measurement model.

Fig. 4. Overview of the bias estimation framework. The
UWB range measurements and the estimated posi-
tions of the antenna are logged along a trajectory.
The bias to each anchor is assumed to be constant in
each cube.

5.1 UWB Bias Modelling

As depicted in Fig. 4, in order to estimate the bias for
each anchor in each cube, the camera, IMU, and UWB
measurements should be logged when the quadrocopter
performs a maneuver and an optimization run after com-
pleting the maneuver in order to estimate the biases that
maximize the measurement likelihood along the trajectory.
Due to the large amount of data, this high dimensional
problem quickly becomes computationally intractable on
the embedded platform. Forster et al. (2015) approach a
similar problem in visual-inertial odometry by factorizing
the IMU measurements, thus reducing the problem’s di-
mensionality. In our case, dimensionality is reduced by
logging the UWB range measurements when they arrive,
as well as the estimated position of the quadrocopter’s
UWB antenna (derived from the fusion of camera and IMU
measurements) whenever a measurement update with a
camera pose estimate is performed (i.e. at a frequency of
60 Hz).

We denote the set of antenna position measurements asM.
These measurements mark the times and locations along
the trajectory at which a camera update was performed.
Given a measurement m ∈M, the position of the quadro-
copter’s UWB antenna in the inertial frame is measured
as

zant[m] = pant[m] + ηant, (9)

where pant[m] denotes the actual position of the antenna,
and where the measurement of this position is corrupted
by an assumed white and normally-distributed measure-
ment noise ηant ∼ N (0,Σant) with zero mean and covari-
ance Σant.

As shown in Fig. 4, UWB range measurements to an
anchor are corrupted by a systematic bias based on the
quadrocopter’s position, and the anchor to which the range
is measured. The range bias for each anchor is assumed
to be constant in time and spatially varying. In order to
model the range biases, the world is segmented into cubes,
in which the range bias for each anchor is assumed to
be constant. This approach is similar to the approach of
Prorok and Martinoli (2014), who use spatially anchored
error models.

As the quadrocopter flies the trajectory, range measure-
ments are collected at a rate of 200 Hz. Since this is more
frequent than measurements of the antenna’s position are
recorded (60 Hz, since this occurs upon updating with a
camera image), multiple range measurements will occur
between two position measurements. For a range mea-
surement r, we define pinterp[r] to be the position of the
quadrocopter’s antenna in the inertial frame at the time
of recording the range measurement r, and relate it to
the antenna position of the previous measurement pant[m]
and next measurement pant[m + 1] using linear interpo-
lation based on the measurement times. Although it is
possible to record the quadrocopter’s state estimate upon
the reception of every range measurement, by relating
the position of a range measurement to the position of
a camera measurement, we significantly reduce the num-
ber of optimization variables, hence making this problem
computationally tractable on the embedded system.



We denote the set of all range measurements R, and for
a range measurement r ∈ R define: ar to be the anchor
index and panch[ar] to be the known position of the anchor
to which the range was measured; cr to be the cube index
in which the range was measured; and b[ar, cr] to be the
bias of a measurement to anchor ar in cube cr. Note that
multiple range measurements made to the same anchor in
the same cube will have the same bias. We further define
the value of the range measurement to be

zrange[r] = ‖panch[ar]− pinterp[r]‖+ b[ar, cr] + ηrange,
(10)

where the measurement of this range is corrupted by
an assumed white and normally-distributed measurement
noise ηrange ∼ N (0,Σrange) with zero mean and covariance
Σrange.

The problem of estimating the biases and path flown
during a maneuver can be expressed as the follow-
ing non-linear least squares minimization problem over
pant[m] ∀m ∈M and b[ar, cr] ∀r ∈ R:

min
∑
r∈R

∥∥Σ−1
rangeρrange[r]

∥∥2
+
∑

m∈M

∥∥Σ−1
antρant[m]

∥∥2
(11)

where

ρrange[r] = zrange[r]− (‖panch[ar]− pinterp[r]‖+ b[ar, cr])

ρant[m] = zant[m]− pant[m],
(12)

and recalling that pinterp[r] is a function of the opti-
mization variables pant[m]. This problem formulation is
attractive: it is computationally tractable on the em-
bedded system (e.g. it can be solved quickly using the
Levenberg-Marquardt algorithm (Moré, 1978)); and, un-
der the prior assumption of Gaussian measurement noise
(ηant and ηrange), results in the maximum likelihood esti-
mate (Bishop, 2006). To maintain reasonable solving times
on the embedded system, longer trajectories are segmented
into sub-trajectories and the problem is solved for each
portion.

The main disadvantage of this technique is that only the
spatially varying bias is learned; whereas, as shown by Ye
et al. (2010), the bias also appears to depend on the orien-
tation of the quadrocopter. However, since the maneuvers
traverse similar cubes with a similar orientation, this does
not appear to have a significant effect on the situation
described in this paper, as is shown in Section 6.

6. EVALUATION

This section describes the implementation details and the
experimental results assessing the camera-based estimator,
the bias estimation framework, and the landing maneu-
vers.

6.1 System Architecture

The quadrocopter used for the experiments is an Ascend-
ing Technologies Hummingbird that was modified to run
with a Snapdragon Flight computer, which is equipped
with both a Quad-core 2.26 GHz Krait CPU and a DSP.
The camera used to record images at a resolution of
1920x1080 (1080p) is a Sony IMX135 camera. The IMU

is a low-cost Invensense MPU-9250 and the UWB radios
are Decawave DWM1000 modules.

The algorithms presented in this paper are implemented
based on the Flying Machine Arena framework (see Lu-
pashin et al. (2014)), which is used to issue high level
commands, and additionally to provide accurate motion
capture data for comparison purposes. Every algorithm
presented in this paper runs onboard the quadrocopter and
without the help of the external motion capture system.

Fig. 5. Block diagram of the system. The estimator ob-
tains measurements from the IMU, UWB radios, and
camera. Based on the state estimate and the desired
end state and time, the MPC generates a control
input that is tracked by the angular rate and thrust
controller.

The non-linear optimization problem of the trajectory gen-
eration step is solved with the open source library NLopt
(Johnson (2007)) implementing the algorithm described in
Kraft (1988) and Kraft (1994).

The block diagram of the system is depicted in Fig. 5. The
estimator obtains measurements from the IMU at 1 kHz,
from the UWB anchors at 200 Hz, and from the camera
at 60 Hz. Given the current state estimate, the desired
end state and the time to reach it, the MPC calculates
a series of control inputs at a frequency of 50 Hz. These
commands are tracked with an angular rate and thrust
controller which runs at 1 kHz and uses the gyroscopic
sensor for feedback. This controller is further described
in Appendix B of Lupashin et al. (2014).

6.2 Setup

The experimental area was equipped with four UWB
anchors arranged in a rhombus at heights varying from
0 to 3m. The landing platform is a 0.38 m× 0.38 m square
whose center is placed 0.7 m in front of the pattern.

In order to estimate UWB biases along the trajectory, the
space was divided into cubes with a side length of 0.2 m.

6.3 Results

Slow Triangular Maneuver The first experiment was
designed to assess the performance of the camera-based
estimator and the bias estimation framework. A slow,
horizontal trajectory at the same height as the pattern’s
center was repeatedly flown, after which the bias estima-
tion framework was run. In order to assess the impact
of the bias compensation step, the trajectory was then
reflown and two estimators fusing only the IMU and UWB



measurements were run simultaneously. The first used raw
UWB range measurements, while the second also corrected
the range with the estimated UWB bias. This mimics
the impact of an occlusion in the vision system during a
trajectory. Fig. 6 shows range measurements in the reflown
trajectory to two different anchors with and without bias
compensation. Spikes in the range measurements to the
first anchor (as seen in Fig. 6) arise when the UWB radio
signal has to traverse the quadrocopter. Due to the as-
sumption that the bias is constant in a cube, the estimator
cannot handle such outliers well.

The mean absolute error of the IMU-Camera EKF position
is 0.036 m in the reflown trajectory.

Fig. 6. Range measurements for two anchors in the first
experiment. The ground truth measurements are in
blue, the raw range measurements in red, and the bias
compensated measurements in yellow.

The position estimates of the two estimators in the second
trajectory are presented in Fig. 7. The mean absolute error
of the position estimate is reduced from 0.30 m to 0.12 m
when compensating for range biases.

Fig. 7. This figure shows the effect of bias compensation
on the position estimate. Shown in red, the position is
estimated based on raw UWB ranges, while in yellow,
the position is estimated based on bias-compensated
range measurements. The position as measured by the
motion capture system is shown in blue.

Landing Maneuver The goal of the second experiment
is to assess the landing maneuvers. For that purpose, 3 m
long maneuvers with T = 3.4 s, N = 8 (see Section 4) were
performed. The optimization problem (8) used to generate
the control inputs for these maneuvers can be solved for
different values of the weighting factor α, resulting in
different trajectories. Two such trajectories for α = 0
and α = 0.1 respectively are shown in Fig. 8. While an
α = 0 leads to a better alignment of the camera and the
pattern, it is not clear that this also leads to a better
camera pose estimate. Weighting also the jerk leads to

smoother trajectories with lower peak velocities, hence this
also reduces the motion blur impairing the pose estimates.
Therefore, the value of α should be adapted to the time
available for a maneuver and the exposure time. For our
landing maneuver a value of α = 0.1 was chosen.

Fig. 8. Two trajectories generated by solving the optimiza-
tion problem (8). The upper one with α = 0 better
keeps the camera aligned whereas the lower one with
α = 0.1 leads to smoother trajectories and hence also
less motion blur.

The landing maneuver was flown multiple times, resulting
in a mean absolute position estimation error across all
maneuvers of 0.063 m. Very similar results are obtained
when including bias-compensated UWB measurements,
due to the accuracy of the camera’s pose estimates in
comparison to the estimates from the UWB system.

To simulate the effect of occlusions, UWB range biases
were learned based on the initial camera-based flights,
after which the maneuver was flown multiple times with
the camera disabled and the estimator fusing only the IMU
and UWB measurements. When compensating for UWB
biases, the absolute position error across all maneuvers
was 0.14 m. Without bias estimation, the position error
was 0.21 m.

These results support the idea that bias estimation is nec-
essary for accurate flight of dynamic maneuvers without a
camera. It should be noted that these experiments corre-
spond to the extreme case of visual impairment, where the
camera is unable to provide pose estimates for the entire
duration of the trajectory.

Fig. 9 shows the first trajectory that is calculated by
the MPC in blue along with the ground truth trajectory
finally flown in green. The red rectangles are the pattern
and the landing platform. The discrepancy between the
first calculated trajectory and the one that was performed
highlights the limitations of the simple motion model used
for the quadrocopter. This model does not include the
propeller dynamics and also neglects drag. The advantage
of such a formulation is its simplicity, making it usable for
most multirotors since it does not depend on the vehicle’s
geometry.

7. CONCLUSION

This paper first discusses a suitable control strategy for
a quadrocopter estimating its state by taking images of a
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Fig. 9. Trajectory generated by the MPC during a landing
maneuver. The red rectangles represent the pattern
and the landing platform. The blue curve corresponds
to the first trajectory calculated by the MPC, where
the vectors represent the thrust at each time step. The
green trajectory is the ground truth trajectory.

known pattern with a rigidly mounted onboard camera.
While we only applied this control strategy to land the
quadrocopter on a landing platform, the general problem
formulation also allows its usage for tracking objects, e.g.
for outdoor filming. The second part of the paper shows
how the precise state estimate resulting from this control
strategy can be used to learn the biases of the UWB
localization system such that also under visual impairment
precise maneuvers can be flown.
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