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Abstract— This paper presents a methodology for modelling
the thrust, drag, and torque of propellers used in unmanned-
aerial-vehicle (UAV) applications. The model can be used
in wide flight regimes from hover to high speed forward
flight and is derived from first-principles using Blade Element
Theory (BET), Blade Element Momentum Theory (BEMT),
and a parameter fitting procedure to determine aerodynamic
parameters. The methodology is applied to three different types
of propellers to showcase its versatility, and experiments show
that the procedure can accurately predict the rotor forces. Wind
tunnel measurements are also included to serve as an additional
basis for comparison. A comparison to static thrust models
typically used by roboticists is also shown.

I. INTRODUCTION

In order to analyze aerodynamic properties of an
unmanned-aerial-vehicle (UAV), wind tunnel experiments
must be performed or system identification can be done from
experimental flights. Being able to predict the propeller thrust
and rotor drag can help identify other aerodynamic properties
of a UAV, such as the drag of the vehicle or the amount of
lift a wing produces. An accurate rotor thrust and drag map
can also be used for high fidelity simulation models, and
for control purposes to improve performance of autonomous
UAVs.

The typical approach has been to model the thrust of the
propeller to be proportional to the square of its rotation
rate and to neglect rotor drag in forward flight [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10]. However, as the vehicle
flies with some forward velocity, the accuracy of this model
deteriorates. This is especially the case in high speed (and
high pitch) flight, as will be shown in this paper. Generally
it is good to know when this simplified model of rotor forces
works well and under what conditions does it detiorate.

The thrust map developed in [11], [12] requires that the
mechanical power of each propeller be known. This requires
current sensing on each motor which can lead to bulky
electronics and requires an accurate electrical to mechanical
efficiency model. For some UAVs, current draw information
is not available for each individual motor and/or can be
riddled with noise [13]. Furthermore, [11], [12] neglect rotor
drag and assume uniform induced inflow through the rotor
disk. The rotor force maps developed in this paper does not
make such assumptions and does not make use of power
information.
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In [14], [15], [16], blade element theory (BET) is used to
model the propeller thrust, however, unlike in this paper,
small angle approximations are used for simplicity. Such
approximations are valid for larger rotor disks [15] or for
UAVs that fly at relatively low speeds, however it was found
for our experiments, where the UAVs reach speeds up to
14.5 m/s using a propeller with a radius of 10 cm, the small
angle approximations are no longer reasonable. Furthermore,
[14], [17] also assume uniform inflow across the rotor disk
and neglects rotor drag. In [15], [18], BET is combined with
blade element momentum theory (BEMT) to model rotor
thrust, but only in axial climb and while also using small-
angle approximations (since their applications are intended
for large rotor disks on helicopters and wind turbines). In
[16] BET and BEMT is combined for UAV applications, but
again in axial climb. This model becomes inaccurate during
forward flight (control volume changes as the rotor disk has
a non-zero angle with the freestream airflow [15, 2.14]; rotor
drag becomes existential).

In this paper, BEMT is combined with BET in forward
flight, which has not been done before according to the
authors’ knowledge, to construct a rotor thrust and drag map.
A parameter fitting procedure is then done to determine the
aerodynamic parameters used in the BET formulation, and
requires the UAV to fly levelled flights at various constant
speeds. The entire methodology is described in Sections
II and III. The technique is then applied in Section IV
to two different propellers: one soft propeller meant for
hovering vehicles and a stiff propeller meant for forward
flying applications, to show the technique can characterize
both types of propellers accurately. A comparison is also
done of the model to direct load measurements in a wind
tunnel for a third propeller. Furthermore, this paper depicts
the limitation of the standard static thrust model when used
in forward flight; this comparison has not been done before
in the literature.

A. Notation

Let 〈~x, ~y〉 denote the inner product of vectors ~x and ~y in
Rn. The Euclidean norm of a vector ~x is denoted by x = ‖~x‖.

II. PROPELLER MODELING

In this section, we derive the rotor average thrust T , drag
D, and torque τ given that the propeller rotates at a rate Ω,
the rotor disk has velocity ~V , and the rotor has a tilt vector
ẑ, see Fig. 1.

The propeller has radius R, with Nb blades per propeller.
It is also assumed that the pitch angle and chord length of
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Fig. 1: Rotor disk. Forces shown in blue. The rotor drag
vector ~D lies on the rotor disk plane ẑ and is aligned with
the velocity vector ~V .
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Fig. 2: Forces and angles shown for an infinitesimal blade
element located at y from the rotor center (see Fig. 1). The
differential drag dD̃ of the blade element acts along ~U and
is not the differential rotor drag dD.

the blade is known at any point along the propeller blade,
represented by the maps

θ : [0,R]→ [0,π/2]
c : [0,R]→ R

respectively. In practice, these maps can be approximated
by spline interpolating measured values along the propeller
blade.

To simplify the derivations in the subsequent sections, let

β := arccos


〈
~V , ẑ

〉
V

 , V 6= 0

be the angle between the freestream velocity and rotor
disk plane. The angle ψ represents the azimuth angle of a
propeller blade within the rotor disk, where ψ = 0 is defined
to be the point where the propeller is parallel to the projection
of ~V on to the rotor disk plane, i.e. projẑ(~V ), which is also
the direction of the rotor drag (see Fig. 1). Rotor drag occurs
only during forward flight, where each blade of the propeller
sees a difference in freestream velocity as it completes a
revolution, thereby resulting in a net drag. Rotor thrust acts
along ẑ.

A. Blade Element Theory

BET is the process of dividing up a propeller blade
into infinitesimal segments or “elements”. The quasi-steady
aerodynamic forces will be derived for each element of the
blade. A function’s dependence on Ω, V and β will be
dropped for brevity.

Let y ∈ [0,R] represent the distance of the differential
blade segment from the center of the propeller (see Fig. 1),
and let the segment have a width of dy. Then, the velocity
components of the air seen by the blade in the tangential and
perpendicular directions to the rotor disk are

UT (y,ψ) = Ωy+V sin(β )sin(ψ) (1)
UP(y,ψ) =V cos(β )+ vi(y), (2)

respectively, where vi is the induced inflow velocity through
the rotor disk [15], and will be solved for in Section II-C.
The angle φ is defined (see Fig 2)

φ(y,ψ) := arctan
(

UP(y,ψ)

UT (y,ψ)

)
and the angle of attack of the blade element is then (see Fig.
2)

α(y,ψ) = θ(y)−φ(y,ψ).

When the fluid is in steady state motion, the aerodynamic
lift and drag forces of the blade element are defined to be
[19]

dL(y,ψ) =
1
2

ρU(y,ψ)2CL(α(y,ψ))c(y)dy

dD̃(y,ψ) =
1
2

ρU(y,ψ)2CD(α(y,ψ))c(y)dy.

where U :=
√

U2
T +U2

P , ρ is the air density, dL and dD̃ are
the aerodynamic force acting perpendicular and tangential
to the freestream velocity of the blade element at distance y
from the rotor’s center. Nonlinear, parametric forms of the
normalized lift and drag CL

1 and CD are given below [20],
[19]

CL(α) = (1−σ(α))cl,1α +σ(α)cl,2 sin(α)cos(α) (3)

CD(α) = cd sin(α)2 +2
1.02cp√

RN(y,U(y,ψ))
+ cd,0 (4)

where cl,1, cl,2, cd are parameters to be empirically deter-
mined in Section III, cp is the skin friction drag coefficient
for laminar flow [19, Blasius Theory], RN(y,U) = ρUc(y)

µ
is

the Reynolds number, µ is the air viscosity, cd,0 is the form-
drag coefficient2, and σ( ·) is a sigmoid function given by
[20]

σ(α) =
1+ e−M(α−α0)+ eM(α+α0)(

1+ e−M(α−α0)
)(

1+ eM(α+α0)
)

where M, α0 are parameters2. This sigmoid function is used
to approximate an airfoil’s stall effect and the roll-off in lift

1A simplified form of CL(α) = cl sin(α)cos(α) also works well, reducing
the number of airfoil parameters by two and computation time (see Section
IV) by an order of magnitude.

2Typical values are ρ = 1.225 kg/m3; cp = 1.328 [19]; µ =
1.983E−5 Pa ·s; M = 50 [20]; cd,0 = 0.01 [21].
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Fig. 3: Infinitesimal control volume located at distance y
from the rotor center (see Fig. 1). In this case shown, the
wake is behind the rotor disk.

as α→ π/2. The parameter α0 will depend on the propeller
airfoil and will be empirically determined in Section III.
Note that CD doesn’t contain the typical induced drag term
from wing-tip vortexes [19], since each blade element doesn’t
produce vortexes except at the very tip of the propeller blade.

Ultimately we are interested in the forces perpendicular
(rotor thrust) and tangential (rotor drag) to the rotor disk
irrespective of the propeller azimuth angle ψ , which is done
with a rotation and averaging

dTBET(y) =
Nb

2π

∫ 2π

0
(dL(y,ψ)cos(φ(y,ψ))

−dD̃(y,ψ)sin(φ(y,ψ))
)

dψ

(5)

dD(y) =
Nb

2π

∫ 2π

0
(dL(y,ψ)sin(φ(y,ψ))

+dD̃(y,ψ)cos(φ(y,ψ))
)

sin(ψ)dψ

(6)

where dTBET, dD are now the differential rotor thrust and
drag, respectively, using the BET formulation. The propeller
torque of the differential element can also be computed

dτ(y) = y
Nb

2π

∫ 2π

0
(dL(y,ψ)sin(φ(y,ψ))

+dD̃(y,ψ)cos(φ(y,ψ))
)

dψ (7)

B. Blade Element Momentum Theory

The induced inflow vi(y) depends on the propeller geom-
etry θ(y), c(y) and the operating conditions V, Ω, β . In pre-
vious works, vi(y) is approximated using various empiracle
models [15, 3.5.2], or using a uniform inflow model from
standard momentum theory [14]. In this section, momentum
theory is applied to an infinitesimal rotor disk (see Fig. 3)
to assist in the computation of the (not necessary uniform)
induced inflow vi(y) by combining the results with BET in
Section II-C. The flow is assumed to be adiabatic, inviscid,
and incompressible. To the best of the authors’ knowledge,
BEMT has not been applied to forward flying applications
to derive the inflow.

The differential control volume is shown in Fig. 3. By
applying the Glauert mass flow model [15, 2.14] to the

differential control volume, the differential mass flow rate
is

dṁ(y) = ρ2πydy
√
(V sin(β ))2 +(V cos(β )+ vi(y))2

where as before, vi(y) is the inflow field and will be solved
for in Section II-C.

Applying the conservation of momentum in the thrust
direction depends on whether the wake region is above
(V cos(β )> 0) or below (V cos(β )< 0) the rotor disk [15].
The following derivation is shown for the case when the
wake is below the rotor disk (Fig. 3). Let w(y) represent the
wake flow, then applying momentum theory yields

dTBEMT(y) = dṁ(V cos(β )+w(y))−dṁ(V cos(β ))
= dṁ(y)w(y) (8)

When the wake is above the rotor disk, the right-hand
side of (8) is negated. If the rotor is in a vortex ring state
(V cos(β ) < 0 and V cos(β )+ vi > 0), momentum theory is
violated and there is no analytic expression for the induced
inflow [15]. This case doesn’t occur in the experiments in
Section IV, however an approximation one could use is the
static induced inflow (12).

Applying the conservation of power,

dTBEMT(y)(V cos(β )+ vi(y))

=
1
2

dṁ(y)
((
(V cos(β )+w(y))2 +(V sin(β ))2)−V 2)

= dṁ(y)(V cos(β )w(y)+
1
2

w(y)2). (9)

Combining (8) and (9) yields w(y) = 2vi(y) and thus

dTBEMT(y) = 2vi(y)dṁ(y)

= 4vi(y)ρπydy
√

(V sin(β ))2 +(V cos(β )+ vi(y))2.

(10)
C. Hybrid Blade Element Momentum Theory

The only unknown in (5) and (10) is the inflow field vi(y).
The BET and BEMT maps are combined to solve for the
inflow velocity field by setting up a root finding problem as
follows. First, treat vi as a variable to the two functions (5)
and (10) to yield dTBET(y,vi) and dTBEMT(y,vi). Then, the
inflow field vi(y) can be solved for using the following

vi(y) = findv∗i s.t. dTBET(y,v∗i ) = dTBEMT(y,v∗i ). (11)

In practice, (11) is solved using Python’s SciPy package.
To hasten the solve time, a smart choice of the initial guess
vi
∗
0(y) should be used. One choice for the initial guess is the

uniform inflow at hover, for which a closed form solution is
derived for in [15, 2.2.2]

vi
∗
0(y)≡

√
Tstatic

2ρπR2 (12)

where Tstatic ∝ Ω2 is the static thrust (i.e. when V = 0)
produced by the propeller.

Now that the field vi(y) is known3, it can be used in (2)

3For fixed-wing UAVs whose wing is behind the slipstream of the rotor,
the induced inflow field vi(y) can also be used to determine the true angle
of attack and freestream velocity seen by the wing.



in the BET formulation to yield the desired averaged rotor
thrust, drag, and torque of a blade element. The full rotor
thrust can then be determined by integrating with respect to
y

T =
∫ R

0

(
dTBET(y)

dy

)
dy (13)

=
∫ R

0

(
Nb

2π

∫ 2π

0

1
2

ρU(y,ψ)2c(y)(CL(α(y,ψ))cos(φ(y,ψ))

−CD(α(y,ψ))sin(φ(y,ψ)))dψ

)
dy

and similarly for the rotor drag

D =
∫ R

0

(
dD(y)

dy

)
dy (14)

=
∫ R

0

(
Nb

2π

∫ 2π

0

1
2

ρU(y,ψ)2c(y)(CL(α(y,ψ))sin(φ(y,ψ))

+CD(α(y,ψ))cos(φ(y,ψ)))sin(ψ)dψ

)
dy.

The propeller torque can also be computed by integrating
(7)

τ =
∫ R

0

(
dτ(y)

dy

)
dy (15)

=
∫ R

0

(
y

Nb

2π

∫ 2π

0

1
2

ρU(y,ψ)2c(y)(CL(α(y,ψ))sin(φ(y,ψ))

+CD(α(y,ψ))cos(φ(y,ψ)))dψ

)
dy.

III. PARAMETER IDENTIFICATION

The aerodynamic parameters to identify in the rotor thrust
and drag maps (13)-(15) are x := (cl,1,cl,2,cd ,α0). In this
section, an experiment and algorithm is designed to identify
the parameter vector x. First, bring back the rotor force
maps (13)-(15) dependence on Ω, β , V and with a slight
abuse of notation, parametrize them by x, to yield the maps
T (Ω,β ,V,x) and D(Ω,β ,V,x).

Let the UAV have n rotors, each producing a thrust
and drag of Ti := T (Ωi,βi,Vi,x), Di := D(Ωi,βi,Vi,x), i ∈
{1, . . . ,n}, respectively, where the subscript i denotes the i’th
rotor. The vehicle flies with velocity ~Vvehicle with body rate
~ω , and let ~ri be the vector from the vehicle’s center to the
location of rotor disk i. Then, in general, each rotor disk has
a velocity of

~Vi =~Vvehicle +~ω×~ri

and thus βi = arccos
(〈

~Vi, ẑi

〉
/Vi

)
as before.

The UAV is then commanded to perform levelled flights
at various constant speeds Vvehicle. Assuming the vehicle is
a multirotor4, at steady state the vertical forces (see Fig. 4)

4For fixed wing UAVs, the lift produced by the wing must be added to
(16) using the form (3) for its lift. The extra parameters for the wing can
then be appended to the parameter vector x and cast into the optimization
(18).

TiDi

ẑi

mg

Body Drag Vvehicle

βi

Vi

ẑB

βbody

Fig. 4: Planar view of the vehicle with forces shown in blue.
Each rotor produces a thrust Ti and drag Di, for i∈{1, . . . ,n}.
The vector ẑB is the plane of the multirotor frame.

are balanced
n

∑
i=1

T (Ωi,βi,Vi,x)sin(βi)+
n

∑
i=1

D(Ωi,βi,Vi,x)cos(βi) = mg

(16)
where m is the mass of vehicle and g is the acceleration
due to gravity. By flying at N various operating conditions
Ω(i, j),β(i, j),V(i, j),V(vehicle, j), for j = 1, . . . ,N, (16) can be used
to identify the aerodynamic parameter vector x in a least
squares sense as follows: first define the error vector

~ε(x) j :=
n

∑
i=1

T (Ω(i, j),β(i, j),V(i, j),x)sin(β(i, j)) +

n

∑
i=1

D(Ω(i, j),β(i, j),V(i, j),x)cos(β(i, j))−mg, (17)

for j = 1, . . . ,N, where ~ε(x) ∈ RN and the subscript j
denotes the index of a specific operating condition. Then,
the aerodynamic parameters x∗ can be computed by

x∗ = argmin
x

~ε(x)>~ε(x) (18)

Python’s SciPy minimization routine is used to solve (18).
A smart choice of initial guess x0 must be used to yield a
physically realizable x∗; the choice used in this paper is x0 =
(2π,2,0,0.47), where the initial guess of cl,1 = 2π, cd = 0
comes from flat plate theory [21], and the initial guess of
cl,2 = 2, α0 = 0.47 comes from averaging airfoil data from
[20].

A. Body Lift Sensitivity

To ensure the multirotor frame isn’t producing vertical
force that could be skewing the parameter fitting, a body
lift term is appended to (16)

Lbody =
1
2

ρV 2
vehicleC

body
L (βbody−π/2)Sbody

where Sbody is the surface area of the multirotor body,
(βbody−π/2) is the angle of attack of the frame (see Fig. 4),
and Cbody

L ( ·) has the form (3) with corresponding parameters
cbody

l,1 ,cbody
l,2 ,αbody. Then, the optimization (18) is recast to
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Fig. 5: Tethered quadrotor set-up. In this case, ẑi, i ∈
{1, . . . ,4}, are parallel to ẑB.

include this term: first, define the augmented parameter
vector x̄ := (x,cbody

l,1 ,cbody
l,2 ,αbody), the error vector

~̄ε(x̄) j := ~ε(x̄) j + Lbody(V(vehicle, j),β(body, j), x̄) − mg,

for j = 1, . . . ,N, and thus the optimization becomes x̄∗ =
argminx̄

~̄ε(x̄)>~̄ε(x̄). This minimization resulted in the optimal
cbody

l,1 ,cbody
l,2 terms to be 0 ( =⇒ Lbody ≡ 0) indicating that

the optimization is insensitive to the body lift term and thus
can be excluded from the analysis (16).

IV. EXPERIMENTAL ASSESSMENT

The approach described in Section III is applied to a
tethered quadrotor (n= 4) as shown in Fig. 5. The tether only
provides the centripetal force required for the quadrotor to
fly in circles, thereby allowing the quadrotor to achieve very
high speeds in a small space [22]. The vehicle is commanded
to fly levelled circles (constant height) at various specified
constant tangential speeds Vvehicle. The control algorithm
used is omitted for brevity, but one could use the approach
found in [6]. The optimization (18) is performed for N = 20
and takes approximately between 2 and 10 hours on a
laptop with a third generation Intel-i7 and 8 GB of RAM
running Solus Linux and Python 3.5.1. A single call of
the thrust/drag/torque map (13)-(15) takes approximately 3
seconds.

Two experiments are done for two different sets of pro-
pellers: “soft” propellers5 made of low rigid plastic meant for
low weight and hovering multirotors, and “stiff” propellers6

made of a carbon composite material and is of high pitch
typically meant for forward flying vehicles. The propeller
characteristics and corresponding parameters x∗ can be found
in Table I. The aerodynamic parameters are in the typical
range of airfoils [20].

Fig. 6 shows the various rotor forces both using the
standard hover approximation (rotor thrust ∝ Ω2, rotor drag

5Parrot AR.Drone 2.0 propeller
6HQP 8x4.5 propeller

TABLE I: Propeller characteristics

Soft5 Stiff6 APC7

G
eo

m
et

ry

R 10 cm 10 cm 10 cm
Nb 2 2 2

maxy∈[0,R] θ(y) 36 deg 41 deg 45 deg
miny∈[0,R] θ(y) 6 deg 14 deg 17 deg
maxy∈[0,R] c(y) 23 mm 23 mm 24 mm
miny∈[0,R] c(y) 14 mm 6 mm 5 mm

x∗

cl,1 6.9 4.2 5.3
cl,2 2.0 2.0 1.7
cd 3.7 1.3 1.8
α0 20.4 deg 27.5 deg 20.6

≡ 0, rotor torque ∝ Ω2) and using the post-fitted maps (13)-
(15).

From the first plot, the collective thrust using the stiff
propeller is more than that produced by the soft ones since
the vehicles weight is larger. The first principles based
model and hover model diverge when the vehicle flies at
7 (for soft) to 9 (for stiff) m/s. The rotor drag is about an
order of magnitude lower than the rotor thrust, but becomes
significant due to its linear relationship with vehicle speed.
The only ground truth available is that the vertical forces
must balance, i.e. ε(x∗) j should be 0 for all j (all steady
state operating conditions). Between 4 and 7 m/s, the hover
model for both propellers underestimate the vertical force
due to the unmodelled rotor drag, and above this range it
overestimates the vertical force.

A. Model comparison with wind tunnel experiments

In order to reason the grey-box model derived in Section
II does indeed capture the true rotor forces, a single propeller
+ motor is placed in a wind-tunnel at the Institute of
Fluid Dynamics (IFD) at ETH Zurich (Fig. 8); direct load
measurements are taken at various operating conditions in
V, Ω, β . The results can be found in Fig. 7 for an APC
high-pitch propeller7; the corresponding parameters used in
the model (13)-(15) can be found in Table I.

As previously discussed, the hover approximation deteri-
orates at the higher pitch angles and higher incoming wind
speeds (error in thrust is as high as 100 percent). The derived
map, however, is able to capture the true load measurements
(within, at the worst case, 9 percent) (see Fig. 7).

V. CONCLUSION

A methodology is presented based on a first principles
based model and parameter fitting on levelled flight data
to predict the aerodynamic forces produced by a rotor in
a wide flight regime that includes hover and forward flight.
Experiments are done on two different propellers to legit-
imize the methodology, and the model is further compared
with load measurements from wind tunnel experiments on a
third propeller. The model developed shows an improvement

7APC 8x6 propeller

https://www.parrot.com/us/spareparts/drones/propellers-parrot-ardrone-20
http://www.robotshop.com/eu/en/8-x-45-black-multi-rotor-cw-propeller-pair.html
http://www3.towerhobbies.com/cgi-bin/wti0001p?&I=LXZK93
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Fig. 6: Rotor forces and torques computed using the post-fitted maps (13)-(15) (labeled BET+BEMT) versus the hover
approximation for two types of propellers (Table I). The first plot is the collective rotor thrusts; second is the collective rotor
drags; third is the sum of the absolute torques of the rotors (for reference); the fourth plot shows the error (17) in the net
vertical force which ideally should be zero (the ground truth, shown in red); the fifth plot shows the associated pitch angles
the quadrotor flew in to fly leveled at the corresponding V (for reference).

over the hover model typically used in literature when flying
at high speeds.

The rotor thrust and drag maps developed in this paper
can be used for the design and control of UAVs, especially
for high speed flight. Since the computation time is in the
order of seconds, a look-up-table can be used for real-
time purposes; using a more accurate thrust and drag model
can improve performance of UAVs at these high speeds.
Furthermore, the maps can aid in identifying the entire
dynamic model of a UAV.
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