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Abstract— This paper presents an ultra-wideband range mea-
surement model based on Gaussian processes. An analysis of
the range measurement error with off-the-shelf ultra-wideband
radio modules reveals a strong correlation between the reported
error and the relative pose of the two ranging modules. A
Gaussian process is trained for capturing this correlation and
is included in the measurement model. Its effectiveness and
real-time applicability are experimentally demonstrated on a
quadrocopter platform.

I. INTRODUCTION

With its recent commercialization, the usage of ultra-
wideband (UWB) radio technology for localization has
gained momentum [1]. With companies such as Decawave
and BeSpoon offering low-cost, low-power and small-size
UWB chips, a vast range of new applications became pos-
sible. Apart from providing a communication link between
two modules, the UWB technology also enables range mea-
surement at the same time as messages are exchanged.
This enables the usage of UWB technology for indoor
localization.

While subcentimeter accuracies of UWB range measure-
ments are reported in research and development [2], [3],
[4], commercially available low-cost UWB systems have
not yet achieved these accuracies in real-world applications.
Non-line-of-sight conditions, multipath arrival times, and the
influence of the UWB antenna design are just a few of the
factors influencing the UWB signal propagation channel and
hence also the range measured [1]. In [5], [6], the space
was tessellated and each area was associated with a unique
UWB measurement model to cope with non-line-of-sight
conditions. Instead of modifying the localization algorithm,
machine learning techniques can be used to identify and
compensate for non-line-of-sight conditions when analyzing
the received UWB waveform [7], [8]. The effect of angle-
dependent UWB pulse distortion as well as the effect of path
overlap on range accuracy are studied in [9], and a modified
leading-edge detection algorithm is suggested to eliminate
bias caused by path overlaps. Multiple antennas and multiple
carrier frequencies are used in [10] to mitigate the effects of
channel and angle-dependent range bias. Lookup tables are
used in [11] to compensate for both angle-dependent and
signal strength-dependent range bias.

Motivated by the systematic range error reported by [12],
[13], [14], [15], who all used off-the-shelf UWB modules,
this paper identifies the range error estimation as one of
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the keys towards more accurate low-cost, small-size, off-the-
shelf localization systems. The main contributions are the
analysis of the ranging error, the suggested UWB measure-
ment model, and an experimental evaluation. The paper is
structured as follows: Section II discusses the error of range
measurements obtained with off-the-shelf UWB modules.
Section III suggests a framework to obtain an error model
for UWB range measurements which can be used for state
estimation as described in Section IV. Finally, Section V
shows the experimental evaluation of the suggested UWB
measurement model and its real-time application.

II. RANGE MEASUREMENT ANALYSIS

In this section the ranging error of the UWB system
presented in [12] is studied to warrant the error model
suggested in Section III.

A. UWB System and Setup
To measure the distance between two UWB antennas

connected to a Decawave DW1000 module, the two-way
ranging algorithm with repeated reply (presented in [12])
is used. Ground truth for the range measurements and the
relative poses of the antennas to each other are obtained
by a motion capture system. Note that these motion capture
measurements are only used for purposes of analysis and
training; they are not required for live operation of the trained
model described in Section III and Section IV.

B. Influence of Antenna Design
For analyzing the systematic error reported by [12], [13],

[14], [15], range measurements with line-of-sight conditions
and no immediate antenna surroundings were taken using
different antenna types in an effort to qualitatively asses their
influence on the error. Two Partron Dielectric Chip antennas
on DWM1000 modules [16] were placed 1.7 m apart. One
antenna was then rotated around its x-axis (see Fig. 1 for axis
labeling), then around its z-axis while range measurements
zrange were taken. The procedure was repeated with two
BroadSpec antennas [17] connected to DW1000 modules.
With ‖r‖ denoting the length of the vector r connecting
the two antennas, Fig. 1 shows the error e = ‖r‖− zrange
of the range measurements over the different rotations.
Clearly, the BroadSpec antenna seems to influence the signal
propagation channel more evenly when it is rotated around
its x-axis than the Partron antenna, which might be due to
its omnidirectionality in the y− z plane. However, its larger
size and its low radiation gain along its x-axis also make it
unsuitable for certain applications such as 3D localization for
wearables. A more thorough discussion about the influence
of the antennas on the UWB transmission is given in [18].



C. Influence of Antenna Surroundings and Manufacturing
Differences

While line-of-sight conditions were ensured for the previ-
ous measurements, a UWB antenna used in a wearable or on
a mobile robot cannot always be placed so that its immediate
surrounding space is free from obstacles, and thus guarantee
line-of-sight conditions for all attitudes. Additionally, man-
ufacturing differences even for the same antenna type might
also influence the signal propagation channel. Therefore,
more range measurements using DWM1000 modules were
taken. While one module was at a fixed place on the
ground (hereafter known as anchor), the other module was
attached to a quadrocopter, and range measurements over
different poses of the two antennas relative to each other
were taken. This procedure was then repeated using different
pairs of DWM1000 modules. Fig. 3 shows measurements
at selected poses for three different pairs of DWM1000
modules, representative of all measurements taken. The
different DWM1000 pairs seem to have a similar error in
most regions. However, in a few regions the mean of the
error differs slightly, and in regions where no line-of-sight

Fig. 1. The figure shows the error of the range measurements obtained with
the Partron (blue) and BroadSpec (red) antennas over different incidence
angles. The setups for the measurements are illustrated on top of the plots for
the Partron antennas on DWM1000 modules. Analogous setups were used
for the measurements with the BroadSpec antennas connected to DW1000
modules.

Fig. 2. Representation of the coordinate frames used in this paper: The
inertial frame I, the anchor antenna fixed frame A, the quadrocopter antenna
fixed frame Q and the IMU fixed frame B. The vector from the quadrocopter
antenna to the anchor antenna is denoted with r and the α , β angles denote
the azimuth and the elevation angles in their respective frames.

conditions are given the error varies considerably. This is the
case for 140◦ < αQ < 220◦ in the upper plot of Fig. 3, as
these measurements required the UWB signal to traverse the
quadrocopter electronics (see Fig. 2 for the variable definition
and setup).

III. RANGE ERROR MODEL

As seen in the previous section, a significant factor in-
fluencing the error in range measurements is the pose of

Fig. 3. Range measurement errors for three different antenna pairs (blue,
green, red) and over different relative poses with eA

z =−eQ
z (see Fig. 2 for

definitions).



the two antennas relative to each other. It was further shown
that there are relative poses with non-line-of-sight conditions,
resulting in strong variations of the error.

Ideally, a range error model can correctly predict the rel-
ative pose-dependent error and provide a confidence interval
for its prediction such that it can be used in a Kalman filter
framework. This is provided by a model based on Gaussian
processes [19] presented in this section.

A. Sparse Gaussian Processes

It is computationally expensive to train a standard Gaus-
sian process on the error and the pose of the two antennas
relative to each other. In addition, the resulting model is not
suitable for real-time usage on a platform with limited com-
putational power. Finally, it would be difficult to construct
a non-stationary covariance function which could capture
the input-dependent confidence level of the prediction. In
contrast, the sparse pseudo-input Gaussian process (SPGP)
[20] is well-suited to this problem. As its authors noted, it
can also model non-stationarity by changing the location of
the pseudo-input points.

A complete introduction to SPGP is beyond the scope of
this paper; therefore, only the necessary preliminaries for the
further discussion are provided and the reader is referred to
[20], [21] for more details. Assuming that the relationship
between an input point x, the process f (x) and the observed
noisy target y is given by

y = f (x)+ ε, (1)

where ε is zero mean additive Gaussian noise with variance
σ2, an SPGP defines a posterior distribution over y∗ at
test location x∗. This distribution is defined by the SPGP’s
pseudo-input points X̄ = [x̄0, x̄1, . . . , x̄M−1]

T, its training data
X = [x0,x1, . . . ,xN−1]

T, y= [y0,y1, . . . ,yN−1]
T, its mean func-

tion (which is assumed to be zero in this case), and its covari-
ance function k(x,x′) with corresponding hyperparameters
θ . In the following we denote the mean and the variance of
this predicted distribution with SPGPµ(x∗) and SPGPΣ(x∗),
respectively.

The location of the pseudo-input points and the hyper-
parameters are found by maximizing the likelihood of the
training data

X̄∗,θ ∗ = argmax
X̄ ,θ

p(y|X , X̄ ,θ ,σ2), (2)

which tends to move the pseudo-input points to locations
with low output variance. Hence, the SPGP can capture
input-dependent confidence levels to a certain extent.

This is demonstrated in Fig. 4, where the predictive
distribution of an SPGP trained on the data from the upper
plot of Fig. 3 is shown. The angle of incidence was chosen
as the input to the SPGP x = αQ and the error of the range
measurements was the target y = e. The covariance function
was given by the standard periodic kernel function

k(x,x′) = θ0 exp

−1
2

(
sin( 1

2 (αQ−α ′Q))

θ1

)2
 , (3)

and the number of pseudo-input points was chosen to be
M = 15. It is clearly visible how the SPGP can capture the
lack of confidence when predicting the range measurement
error without line-of-sight conditions (140◦ < αQ < 220◦) by
moving its pseudo-input points away from that region.

B. Suitable Covariance Functions

Assuming that the error in the range measurements, as
discussed in Section II, depends on the complete relative
pose of the two antennas, the input x to the SPGP should
be a parametrization of SE(3). Furthermore, the covariance
function k (x,x′) should define the proximity or similarity of
two such input points and is therefore of great importance
[19]. However, often in self-localizing UWB anchor net-
works, only the positions but not the attitudes of the anchors
are known. In such scenarios, an SPGP with both the robot
and the anchor antenna’s attitude as input cannot be used. By
assuming that the anchors of such a UWB system are placed
with random attitudes and that their number approaches
infinity, one can show that a bias in the robot’s position
estimate is solely caused by its relative pose to the network.
An input point x1 and a covariance function k1 (x1,x′1) not
containing the anchor antenna’s attitude are given by

x1 = Qr (4)

k1(x1,x′1) = θ0 exp

−1− QrT
Qr′

‖Qr‖‖Qr′‖

θ1
−

(‖Qr‖−‖Qr′‖)2

θ2

 ,
(5)

where Qr denotes the vector r from the quadrocopter antenna
to the anchor antenna expressed in the quadrocopter antenna
fixed coordinate frame Q (see Fig. 2). The first term in the
exponent correlates with the angle between two input points,
whereas the second term correlates with the difference of
their magnitudes.

If the anchor antenna’s attitude is also known, the input

Fig. 4. The mean (black line) and twice the standard deviation (gray lines)
predicted by a SPGP trained with the data shown with red, green and blue
dots. The black dots show the location of the pseudo-input points after
optimization.



and covariance function can be extended to

x2 =
[

QrT,ArT]T (6)

k2(x2,x′2) = θ0 exp

−2− QrT
Qr′

‖Qr‖‖Qr′‖ − ArT
Ar′

‖Ar‖‖Ar′‖

θ1

−
(‖Qr‖−‖Qr′‖)2

θ2

]
, (7)

where x2 parametrizes the relative pose of the two antennas
except for the rotation around the connecting axis. For lin-
early polarized waves, this degree of freedom should be taken
into consideration. However, including this angle did not lead
to improvements and was therefore discarded. This might be
due to overfitting and neglecting depolarizing effects, which
in addition to the attitude of the transmitting antenna, also
have an influence on the polarization [22]. SPGPs using
the former and latter input points and kernel functions are
hereafter denoted by SPGP1 and SPGP2, respectively.

IV. INTEGRATION IN A KALMAN FILTER FRAMEWORK

This section elaborates on how the SPGPs described in
Section III can be used to increase the accuracy of a rigid-
body Kalman filter which uses UWB range measurements
and inertial measurements to update and predict its state
estimate. The first-principles underlying the Kalman filter
are hereby enhanced with a data-driven SPGP.

A. Prediction Equations

By taking acceleration and angular rate measurements (de-
noted by a and ω , respectively) of the inertial measurement
unit as inputs to the rigid-body system, the estimated position
p, velocity v, and orientation with respect to the inertial
frame RIB ∈ SO(3) evolve as follows:

I ṗ = Iv (8)

I v̇ = RIBa+ Ig (9)
ṘIB = RIB[[ω]]×, (10)

where g is the gravitational acceleration and [[ω]]× is the
matrix form of the cross product, defined such that [[ω]]×b =
ω×b for all b∈R3. The noise of the acceleration and angular
rate measurements can be encoded as process noise using
the standard Kalman filter formulation. This is a similar
formulation as in [12].

B. Range Measurement Update Equation

Denoting the location of the anchor antenna with pA and
the position of the quadrocopter antenna with pQ, the range
measurement is given by

zrange = ||pQ−pA||−SPGPµ(x)+
√

SPGPΣ(x)η , (11)

where η is zero mean additive Gaussian noise with unit vari-
ance. Expressing pQ and x as a function of the state variables
p and RIB, this equation can be used in a measurement update
step of the rigid-body Kalman filter by means of one of the
methods described in [23].

V. EXPERIMENTAL RESULTS

This section describes the implementation details and the
experiments performed to assess the ranging error model and
its application in a Kalman filter for a quadrocopter.

A. Implementation

The two-way ranging algorithm with repeated reply was
run on the DW1000 modules such that every 5 ms a range
measurement was recorded or used to update the Kalman
filter, as described in Section IV. During the ranging exper-
iments a motion capture system measured the position and
attitude with an accuracy on the order of millimeters and
milliradians at 200 Hz. The data hereby obtained was used
to train and test the SPGPs with the GPFlow library [24].
To test the real-time applicability of the proposed method,
the SPGP were reprogrammed with Eigen and run on the
Snapdragon Flight computer mounted to a modified Ascend-
ing Technology Hummingbird quadrocopter. The number of
inducing points was set to M = 50 for all experiments to
keep the computational cost low, since an SPGP prediction
of the mean costs O(M) and of the variance costs O(M2)
for a single test input point [20].

B. Range Error Model Evaluation

In the experiments described in Section II, range mea-
surements over different relative antenna poses were taken.
Although there was a large correlation between the error of
range measurements obtained with different antenna pairs,
poses of the antennas relative to each other exist in which the
correlation was smaller. To quantify the effect of these local
differences, SPGPs trained on different antenna pairs were
applied to the same data set and the standard deviation of
the remaining ranging error after correction was calculated.
These numbers are shown in Table I for test data collected
with the antenna pair (0,1) and a standard deviation of
0.133m for the range measurement error before correction
(stdDev(e) = 0.133m). Up to 50% of the ranging error
standard deviation could be explained, if the same antenna
pair was used for training and for testing using a SPGP2.
A general antenna model trained with data from multiple
antenna pairs could explain up to 35% of the standard
deviation. A histogram of the original and the residual error
using such a general model is shown in Fig. 5. If the SPGP
represented perfectly the process f (x) of (1), the standard
deviation of the residual error should match the standard
deviation of the additive process noise ε . However, the
standard deviation of the process noise was calculated to
be σ = 0.03m using static measurements. While part of
the discrepancy between standard deviation of the residual
error and the standard deviation of the process noise is
due to model imperfections, part of it is due to the non-
line-of-sight measurements accounting for about 15% of all
measurements.

To analyze whether the confidence level given by an SPGP
coincides with the one seen in the evaluation of the test
data, all measurements with a certain confidence level in
their prediction were collected in bins, and the standard



TABLE I
STANDARD DEVIATION OF THE RESIDUAL MEASUREMENT ERROR

Train antenna pairs (0,1) (2,1) (2,3),(4,5)

stdDev(e−SPGP1,µ ) [m] 0.088 0.93 0.100

stdDev(e−SPGP2,µ ) [m] 0.067 0.080 0.086 ∗

deviation of the residual measurement error after correction
was calculated. Fig. 6 shows such an evaluation for the case
denoted with ∗ in Table I. As the confidence level given by
the SPGP is quite accurately reflected in the data, it can be
used to weight or to reject measurement data. For example,
by rejecting measurement data belonging to the last two bins
in Fig. 6, i.e. 12 % of the data from this experiment, the
standard deviation of the residual measurement error could
be reduced from 0.086 m to 0.077 m. Especially for filter
initialization, when outlier rejection is more difficult, it might
be of interest to consider only measurements with a high
confidence level.

C. Kalman Filter Evaluation

To assess the real-world applicability of the proposed
method, a range measurement model using a previously
trained SPGP1 was integrated in a Kalman filter, as outlined
in Section IV. The input x1 to the SPGP1 was calculated
using the Kalman filter’s state estimate. While the prediction
step was performed using an extended Kalman filter update
step, the measurement update step was performed using
the spherical unscented transform [25]. A second Kalman
filter not using the error model was run simultaneously for
comparison. Both filters were run with 200 Hz and used
the same measurements to predict and update their state
estimates.

The quadrocopter was commanded to fly a circle while
constantly turning around its body z-axis. During that ma-
neuverer it received range measurements from five different

Fig. 5. This figure compares the distribution of the ranging measurement
error e (left) with the residual error after correction for the case denoted
with ∗ in Table I.

anchors, three of them were placed on the ground in a
circle of radius 4 m, and two were placed at a height of
approximately 2 m. Table II shows the root-mean-square er-
ror of the position estimate (denoted with RMSE(p̂)) and the
standard deviations of the error before and after correction
for two experiments. A reduction in the standard deviation
of the range measurements seems to lead to a significant
reduction of the RMSE of the position estimate. However,
more experiments using different anchor placements and
different commanded trajectories are needed to quantify the
improvement. Fig. 7 shows the estimated positions over four
flown circles. It is visible that the vertical estimation error is
reduced most. This might be due to the anchor setup, which
made the estimated height most sensitive to measurement
errors.

TABLE II
RMS ERROR

Experiment 1 2

RMSE(p̂) without error model [m] 0.22 0.19

RMSE(p̂) with error model [m] 0.12 0.10

stdDev(e) [m] 0.13 0.13

stdDev(e−SPGP1,µ ) [m] 0.08 0.10

VI. CONCLUSION

The ultra-wideband range measurement model presented
in this paper utilizes a sparse pseudo-input Gaussian process
to predict the pose-dependent error and noise level. It was
demonstrated that such a measurement model can improve
the localization accuracy especially in applications in which
UWB antennas are placed on robots and are therefore par-
tially shielded and strongly influenced by their surrounding.

The achievable improvements by such a measurement
model strongly depend on the anchor setup, the choice of

Fig. 6. The data shown in Fig. 5 and denoted with ∗ in Table I is assigned to
four different bins based on the confidence level of the error prediction. The
confidence level versus the standard deviation of the residual measurement
error for each bin is plotted.



covariance function, the number of pseudo-input points, the
training data and the optimization routine used. A rigorous
discussion of these aspects is future work.
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