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Abstract—A method is presented for the rapid generation and
feasibility verification of motion primitives for quadrocopters and
similar multirotor vehicles. The motion primitives are defined
by the quadrocopter’s initial state, the desired motion duration,
and any combination of components of the quadrocopter’s
position, velocity and acceleration at the motion’s end. Closed
form solutions for the primitives are given, which minimize a
cost function related to input aggressiveness. Computationally
efficient tests are presented to allow for rapid feasibility verifica-
tion. Conditions are given under which the existence of feasible
primitives can be guaranteed a priori. The algorithm may be
incorporated in a high-level trajectory generator, which can then
rapidly search over a large number of motion primitives which
would achieve some given high-level goal. It is shown that a
million motion primitives may be evaluated and compared per
second on a standard laptop computer. The motion primitive
generation algorithm is experimentally demonstrated by tasking
a quadrocopter with an attached net to catch a thrown ball,
evaluating thousands of different possible motions to catch the
ball.

I. INTRODUCTION

QUADROCOPTERS offer exceptional agility, with typ-
ically high thrust-to-weight ratios, and large potential

for angular acceleration due to the outward mounting of
the propellers. This allows them to perform complex and
highly dynamic tasks, for example aerial manipulation [1]
and cooperative aerial acrobatics [2]. The ability to hover,
and the safety offered by small rotors storing relatively little
energy [3], make quadrocopters attractive platforms for aerial
robotic tasks that involve the navigation of tight, cluttered
environments (for example, [4], [5]).

A key feature required for the use of these vehicles under
complex conditions is a trajectory generator. The trajectory
generator is tasked with computing flight paths that achieve the
task objective, while respecting the quadrocopter dynamics.
The trajectory must also be collision-free, and there could be
additional requirements imposed on the motion by the sensing
modalities (for example, limits on the quadrocopter velocity
imposed by an onboard camera). This trajectory planning
problem is complicated by the underactuated and nonlinear
nature of the quadrocopter dynamics, as well as potentially
complex task constraints that may consist of variable manoeu-
vre durations, partially constrained final states, and non-convex
state constraints. In addition, dynamic environments or large
disturbances may require the re-computation or adaptation of
trajectories in real time, thus limiting the time available for
computation.
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Active research in this field has yielded numerous trajectory
generation algorithms, focusing on different trade-offs between
computational complexity, the agility of the possible motions,
the level of detail in which manoeuvre constraints can be
specified, and the ability to handle complex environments.

Broadly speaking, a first group of algorithms handles the
trajectory generation problem by decoupling geometric and
temporal planning: in a first step, a geometric trajectory
without time information is constructed, for example using
lines [6], polynomials [7], or splines [8]. In a second step,
the geometric trajectory is parametrised in time in order to
guarantee feasibility with respect to the dynamics of quadro-
copters.

A second group of algorithms exploits the differential
flatness of the quadrocopter dynamics in order to derive
constraints on the trajectory, and then solves an optimization
problem over a class of trajectories, for example minimum
snap [9], minimum time [10], shortest path under uncertain
conditions [11], or combinations of position derivatives [5].
In [12] a search over parameters is proposed for quadrocopter
motion planning, including trajectories where the position
is described by polynomials in time. A dynamic inversion
based controller is proposed in [13] to directly control a
quadrocopter’s position and orientation, and this controller
is exploited in [14]. For a broader discussion of differential
flatness see e.g. [15], [16], and e.g. [17], [18] for generic
trajectory generation methods for differentially flat systems.

A common property of these methods is that they impose
a rigid structure on the end state, for example fixing the final
state and allowing a fixed or varying manoeuvre duration,
or by specifying the goal state with convex inequalities.
Many quadrocopter applications do not, however, impose such
structured constraints; instead the set of states that achieve the
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Fig. 1. The presented algorithm aims to provide computationally inexpensive
motion primitives, which may then be incorporated by a high-level trajectory
generator. The focus of this paper is on the right-hand-side (unshaded) part
of this diagram.



application might be non-convex, or even disjoint. Further-
more, the conditions on the final state necessary to achieve
a task may be time-dependent (for example when the task
objective involves interaction with a dynamic environment).
Methods relying on convex optimisation furthermore require
the construction of (conservative) convex approximations of
constraints, potentially significantly reducing the space of
feasible trajectories.

This paper attempts a different approach to multicopter
trajectory generation, where the constraints are not explicitly
encoded at the planning stage. Instead, the focus is on devel-
oping a computationally light-weight and easy-to-implement
motion primitive, which can be easily tested for constraints
violation, and allows significant flexibility in defining initial
and final conditions for the quadrocopter. The low compu-
tational cost may then be exploited by searching over a
multitude of primitives to achieve some goal. Each primitive is
characterised by the quadrocopter’s initial state, a duration, and
a set of constraints on the quadrocopter’s position, velocity,
and/or acceleration at the end of the primitive.

The approach is illustrated in Fig. 1. The high-level tra-
jectory generator is tasked with evaluating motion primitives,
and specifically with defining the constraints on the motion
primitives to solve the given high-level goal. The high-level
trajectory generator must also encode the behaviour for dealing
with infeasible motion primitives. As an example, the high-
level trajectory generator may generate a large number of
motion primitives, with varying durations and end variables, to
increase the probability of finding a feasible motion primitive.
These motion primitives are generated in a two-step approach:
First, a state-to-state planner is used to generate a motion while
disregarding feasibility constraints. In the second step, this
trajectory is checked for feasibility. The first step is solved
for in closed form, while a computationally efficient recursive
test is designed for the feasibility tests of the second step.

The state-to-state motion primitives generated in the first
step are closely related to other algorithms exploiting the
differential flatness of the quadrocopter dynamics to plan
position trajectories that are polynomials in time (e.g. [5],
[9], [12]). In this paper an optimal control problem is solved,
whose objective function is related to minimizing an upper
bound of the product of the quadrocopter inputs, to yield
position trajectories characterised by fifth order polynomials in
time. A key property that is then exploited is that the specific
polynomials allow for the rapid verification of constraints on
the system’s inputs, and constraints on the position, velocity,
and/or acceleration.

The benefits of this approach are twofold: first, a unified
framework is given to generate trajectories for arbitrary ma-
noeuvre duration and end state constraints, resulting in an al-
gorithm which can be easily implemented across a large range
of trajectory generation problems. Secondly, the computational
cost of the approach is shown to be very low, such that on
the order of one million motion primitives per second can be
generated and tested for feasibility on a laptop computer with
an unoptimised implementation.

The algorithm therefore lends itself to problems with signifi-
cant freedom in the end state. In this situation, the designer can

apply the presented approach to rapidly search over the space
of end states and trajectory durations which would achieve
the high level goal. This ability to quickly evaluate a vast
number of candidate trajectories is achieved at the expense
of not directly considering the feasibility constraints in the
trajectory generation phase, but rather verifying feasibility a
posteriori.

For certain classes of trajectories, explicit guarantees can
be given on the existence of feasible motion primitives as
a function of the problem data. Specifically, for rest-to-rest
manoeuvres, a bound on the motion primitive duration is ex-
plicitly calculated as a function of the distance to be translated
and the system’s input constraints. Furthermore, bounds on
the velocity during the rest-to-rest manoeuvre are explicitly
calculated, and it is shown that the position feasibility of rest-
to-rest trajectories can be directly asserted if the allowable
flight space is convex.

An experimental demonstration of the algorithm is pre-
sented where the motion primitive generator is encapsulated in
a high-level trajectory generation algorithm. The goal is for a
quadrocopter with an attached net to catch a thrown ball. The
catching trajectories must be generated in real time, because
the ball’s flight is not repeatable. Furthermore, for a given
ball trajectory, the ball can be caught in many different ways
(quadrocopter positions and orientations). The computational
efficiency of the presented approach is exploited to do an
exhaustive search over these possibilities in real time.

An implementation of the algorithm presented in this paper
in both C++ and Python is made available at [19].

This paper follows on previous work presented at confer-
ences [20], [21]. A related cost function, the same dynamics
model, and a related decoupled planning approach were pre-
sented in [20]. Preliminary results of the fundamental state-
to-state motion primitive generation algorithm were presented
in [21]. This paper extends these previous results by presenting

• conditions under which primitives are guaranteed to be
feasible;

• an investigation into the completeness of the approach,
by comparing rest-to-rest trajectories to the time optimal
rest-to-rest trajectories; and

• presenting a challenging novel demonstration to show the
capabilities of the approach.

The remainder of this paper is organised as follows: the
quadrocopter model and problem statement are given in Sec-
tion II, with the motion primitive generation scheme pre-
sented in Section III. A computationally efficient algorithm
to determine feasibility of generated trajectories is presented
in Section IV. The choice of coordinate system is discussed
in Section V. In Section VI classes of problems are discussed
where the existence of feasible trajectories can be guaranteed.
The performance of the presented approach is compared to the
system’s physical limits in Section VII. The computational
cost of the algorithm is measured in Section VIII, and the
demonstration of catching a ball is presented in Section IX. A
conclusion is given in Section X.



II. SYSTEM DYNAMICS AND PROBLEM STATEMENT

This section describes the dynamic model used to de-
scribe the quadrocopter’s motion, including constraints on the
quadrocopter inputs. A formal statement of the problem to be
solved in this paper is then given, followed by an overview of
the solution approach.

A. Quadrocopter dynamic model

The quadrocopter is modelled as a rigid body with six
degrees of freedom: linear translation along the orthogonal
inertial axes, x = (x1, x2, x3), and three degrees of freedom
describing the rotation of the frame attached to the body with
respect to the inertial frame, defined by the proper orthogonal
matrix R. Note that the notation x = (x1, x2, x3) is used
throughout this paper to compactly express the elements of a
column vector.

The control inputs to the system are taken as the scalar total
thrust produced f , for simplicity normalised by the vehicle
mass and thus having units of acceleration; and the body rates
expressed in the body-fixed frame as ω = (ω1, ω2, ω3), as
are illustrated in Fig. 2. It is assumed that high bandwidth
controllers are used to track these angular rate commands.
Then by separation of timescales, because of the vehicles’ low
rotational inertia and their ability to produce large torques,
it is assumed that the angular rate commands are tracked
perfectly and that angular dynamics may be neglected. The
quadrocopter’s state is thus nine dimensional, and consists of
the position, velocity, and orientation.

Although more complex quadrocopter models exist that
incorporate, for example, aerodynamic drag [22] or propeller
speeds [23], the preceding model captures the most relevant
dynamics, and yields tractable solutions to the trajectory
generation problem. Furthermore, in many applications (for
example, model predictive control) such a simple model is
sufficient, with continuous replanning compensating for mod-
elling inaccuracies.

The differential equations governing the flight of the quadro-
copter are now taken as those of a rigid body [24]

ẍ = R e3f + g (1)

Ṙ = R Jω×K (2)

with g the acceleration due to gravity as expressed in the
inertial coordinate frame, e3 = (0, 0, 1) a constant vector in

g
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Fig. 2. Dynamic model of a quadrocopter, acted upon by gravity g, a
thrust force f pointing along the (body-fixed) axis e3; and rotating with
angular rate ω = (ω1, ω2, ω3), with its position in inertial space given
as (x1, x2, x3).

the body-fixed frame, as illustrated in Fig. 2. Finally, Jω×K is
the skew-symmetric matrix form of the vector cross product
such that

Jω×K =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3)

It should be noted that the preceding model may also
be applied to other multirotor vehicles, such as hexa- and
octocopters. This is because the high-bandwidth angular rate
controller that maps angular velocity errors to motor forces
effectively hides the number and locations of the propellers.

1) Feasible inputs: The achievable thrust f produced by
the vehicle lies in the range

0 ≤ fmin ≤ f ≤ fmax (4)

where fmin is non-negative because of the fixed sense of
rotation of the fixed-pitch propellers. The magnitude of the
angular velocity command is taken to be constrained to lie
within a ball:

‖ω‖ ≤ ωmax (5)

with ‖·‖ the Euclidean norm. This limit could be due, for
example, to saturation limits of the rate gyroscopes, or motion
limits of cameras mounted on the vehicle. Alternatively, a
designer may use this value as a tuning factor, to encode
the dynamic regime where the low-order dynamics of (1)-
(2) effectively describe the true quadrocopter. The Euclidean
norm is chosen for computational convenience, specifically
invariance under rotation.

B. Problem statement

Define σ(t) to be translational variables of the quadrocopter,
consisting of its position, velocity and acceleration, such that

σ(t) = (x(t), ẋ(t), ẍ(t)) ∈ R9. (6)

Let T be the goal duration of the motion, and let σ̂i be
components of desired translational variables at the end of the
motion, for some i ∈ I ⊆ {1, 2, . . . , 9}. Let the trajectory goal
be achieved if

σi(T ) = σ̂i ∀i ∈ I. (7)

Furthermore, the quadrocopter is subject to Nc translational
constraints of the form

aTj σ(t) ≤ bj for t ∈ [0, T ] , j = 1, 2, . . . , Nc. (8)

An interpretation of these translational constraints is given at
the end of this section.

The problem addressed in this paper is to find quadrocopter
inputs f(t), ω(t) over [0, T ], for a quadrocopter starting at
some initial state consisting of position, velocity, and orien-
tation, at time t = 0 to an end state at time T satisfying (7),
while satisfying throughout the trajectory:
• the vehicle dynamics (1)-(2),
• the input constraints (4)-(5), and
• the Nc affine translational constraints (8).



Discussion: It should be noted that the nine quadrocopter
state variables as described in Section II-A (three each for
position, velocity and orientation) are not the nine translational
variables. Only eight components of the state are encoded
in the translational variables, consisting of the quadrocopter’s
position, its velocity, and two components of the orientation
(which are encoded through the acceleration). These two ori-
entation components are those that determine the direction of
the quadrocopter’s thrust vector – given an acceleration value,
the quadrocopter’s thrust direction Re3 can be recovered
through (1). These are the same components encoded by the
Euler roll and pitch angles. The translational variables do not
encode the quadrocopter’s rotation about the thrust axis (the
Euler yaw angle).

These variables are chosen because they are computationally
convenient, whilst still being useful to encode many realistic
problems. Two example problems are given below:

(i) To-rest manoeuvre: let the goal be to arrive at some point
in space, at rest, at time T . Then all nine translational variables
will be specified in (7), with specifically the components cor-
responding to velocity and acceleration set to zero. Similarly,
if the goal is simply to arrive at a point in space, but the final
velocity and acceleration do not matter, only the first three
components of σ̂ are specified.

(ii) Landing on a moving platform: to land the quadrocopter
on a moving, possibly slanted platform, the goal end position
and velocity are set equal to those of the platform at time T .
The end acceleration is specified to be such that the quadro-
copter’s thrust vector e3 is parallel to the normal vector of
the landing platform. Then the quadrocopter will arrive with
zero relative speed at the platform, and touch down flatly with
respect to the platform.

The affine translational constraints of (8) are also chosen
for computational convenience. They allow to encode, for
example, that the position may not intersect a plane (such
as the ground, or a wall), or specify a box constraint on the
vehicle velocity. Constraints on the acceleration, in conjunc-
tion with (4), can be interpreted as limiting the tilt of the
quadrocopter, by (1).

III. MOTION PRIMITIVE GENERATION

Given an end time T and goal translational variables σ̂i,
the dynamic model of Section II-A is used to generate motion
primitives guiding the quadrocopter from some initial state to
a state achieving the goal translational variables. The input
constraints, and the affine state constraints, are ignored at
this stage, and the motion primitives are generated in the
quadrocopter’s jerk. Each of the three spatial axes is solved
for independently. The generated motion primitive minimises a
cost value for each axis independently of the other axes, but the
total cost is shown to be representative of the aggressiveness
of the true system inputs. Constraints on the input and state
are considered in Sections IV and VI.

A. Formulating the dynamics in jerk

We follow [10] in planning the motion of the quadrocopter
in terms of the jerk along each of the axes, allowing the system

to be considered as a triple integrator in each axis. By ignoring
the input constraints, the axes can be decoupled, and motions
generated for each axis separately. These decoupled axes are
then recombined in later sections when considering feasibility.
This subsection will describe how to recover the thrust and
body rates inputs from such a thrice differentiable trajectory.

Given a thrice differentiable motion x(t), the jerk is written
as j =

...
x = (

...
x1,

...
x2,

...
x3). The input thrust f is computed by

applying the Euclidean norm to (1):

f = ‖ẍ− g‖ . (9)

Taking the first derivative of (1) and (9), yields

j = RJω×Ke3f + Re3ḟ (10)

ḟ = eT3 R
−1j. (11)

After substitution, and evaluating the product Jω×Ke3, it
can be seen that the jerk j and thrust f fix two components
of the body rates: ω2

−ω1

0

 =
1

f

1 0 0
0 1 0
0 0 0

R−1j. (12)

Note that ω3 does not affect the linear motion, and is therefore
not specified. Throughout the rest of the paper, it will be taken
as ω3 = 0.

B. Cost function

The goal of the motion primitive generator is to compute a
thrice differentiable trajectory which guides the quadrocopter
from an initial state to a (possibly only partially defined) final
state in a final time T , while minimizing the cost function

JΣ =
1

T

T∫
0

‖j(t)‖2 dt. (13)

This cost function has an interpretation as an upper bound
on the average of a product of the inputs to the (nonlinear, cou-
pled) quadrocopter system: rewriting (12), and taking ω3 = 0
gives

f2 ‖ω‖2 =

∥∥∥∥∥∥f
 ω2

−ω1

0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
1 0 0

0 1 0
0 0 0

R−1j

∥∥∥∥∥∥
2

≤ ‖j‖2 (14)

so that:

1

T

T∫
0

f(t)2 ‖ω(t)‖2 dt ≤ JΣ. (15)

If multiple motion primitives exist that all achieve some high-
level goal, this cost function may thus be used to rank the
input aggressiveness of the primitives. The cost function is
also computationally convenient, and closed form solutions
for the optimal trajectories are given below.



C. Axes decoupling and trajectory generation

The nonlinear trajectory generation problem is simplified by
decoupling the dynamics into three orthogonal inertial axes,
and treating each axis as a triple integrator with jerk used
as control input. The true control inputs f and ω are then
recovered from the jerk inputs using (9) and (12). The final
state is determined from the goal end state components σ̂i
relevant to each axis, and the duration T is given.

The cost function of the three dimensional motion, JΣ, is
decoupled into a per-axis cost Jk by expanding the integrand
in (13).

JΣ =

3∑
k=1

Jk, where Jk =
1

T

T∫
0

jk(t)2 dt (16)

For each axis k, the state sk = (pk, vk, ak) is introduced,
consisting of the scalars position, velocity, and acceleration.
The jerk jk is taken as input, such that

ṡk = fs(sk, jk) = (vk, ak, jk) . (17)

Note again that the input constraints of Section II-A are not
considered here, during the planning stage, but are deferred to
Sections IV and VI.

For the sake of readability, the axis subscript k will be
discarded for the remainder of this section where only a single
axis is considered. The time argument t will similarly be
neglected where it is considered unambiguous.

The optimal state trajectory can be solved straightforwardly
with Pontryagin’s minimum principle (see e.g. [25]) by in-
troducing the costate λ = (λ1, λ2, λ3) and defining the
Hamiltonian function H(s, j, λ):

H(s, j, λ) =
1

T
j2 + λT fs(s, j)

=
1

T
j2 + λ1v + λ2a+ λ3j (18)

λ̇ = −∇sH(s∗, j∗, λ) = (0,−λ1,−λ2) (19)

where j∗k and s∗k represent the optimal input and state trajec-
tories, respectively.

The costate differential equation (19) is easily solved, and
for later convenience the solution is written in the con-
stants α, β and γ, such that

λ(t) =
1

T

 −2α
2αt+ 2β

−αt2 − 2βt− 2γ

 . (20)

The optimal input trajectory is solved for as

j∗(t) = arg min
j(t)

H(s∗(t), j(t), λ(t))

=
1

2
αt2 + βt+ γ (21)

from which the optimal state trajectory follows from integra-
tion of (17):

s∗(t) =

 α
120 t

5 + β
24 t

4 + γ
6 t

3 + a0
2 t

2 + v0t+ p0
α
24 t

4 + β
6 t

3 + γ
2 t

2 + a0t+ v0
α
6 t

3 + β
2 t

2 + γt+ a0

 (22)

with the integration constants set to satisfy the initial condi-
tion s(0) = (p0, v0, a0).

The remaining unknowns α, β and γ are solved for as
a function of the desired end translational variable compo-
nents σ̂i as given in (7).

1) Fully defined end translational state: Let the desired end
position, velocity, and acceleration along this axis be s(T ) =
(pf , vf , af ), given by the components σ̂i. Then the un-
knowns α, β and γ are isolated by reordering (22): 1

120T
5 1

24T
4 1

6T
3

1
24T

4 1
6T

3 1
2T

2

1
6T

3 1
2T

2 T

αβ
γ

 =

∆p
∆v
∆a

 (23)

where ∆p
∆v
∆a

 =

pf − p0 − v0T − 1
2a0T

2

vf − v0 − a0T
af − a0

 . (24)

Solving for the unknown coefficients yieldsαβ
γ

 =
1

T 5

 720 −360T 60T 2

−360T 168T 2 −24T 3

60T 2 −24T 3 3T 4

∆p
∆v
∆a

 . (25)

Thus, generating a motion primitive only requires evaluating
the above matrix multiplication for each axis, after which the
state along the primitive is found by evaluating (22).

2) Partially defined end translational state: Components
of the final state may be left free by σ̂. These states may
correspondingly be specified as free when solving the optimal
input trajectory, by noting that the corresponding costates must
equal zero at the end time [25]. The closed form solutions to
the six different combinations of partially defined end states
are given in Appendix A – in each case solving the coefficients
reduces to evaluating a matrix product.

3) Motion primitive cost: The per-axis cost value of (16)
can be explicitly calculated as below. This is useful if multiple
different candidate motion primitives are evaluated to achieve
some higher-level goal. In this case, the primitive with the
lowest cost can be taken as the ‘least aggressive’ in the sense
of (14).

J =γ2 + βγT +
1

3
β2T 2 +

1

3
αγT 2

+
1

4
αβT 3 +

1

20
α2T 4

(26)

Note that this cost holds for all combinations of end
translational variables.

IV. DETERMINING FEASIBILITY

The motion primitives generated in the previous section did
not take the input feasibility constraints of Section II-A1 into
account – this section revisits these and provides computa-
tionally inexpensive tests for the feasibility/infeasibility of a
given motion primitive with respect to the input constraints
of (4) and (5). This section also provides a computationally
inexpensive method to calculate the extrema of an affine
combination of the translational variables along the primitive,
allowing to test constraints of the form (8). In Section VI
conditions are given under which feasible motion primitives
are guaranteed to exist.



A. Input feasibility

Given some time interval T = [τ1, τ2] ⊆ [0, T ] and three
triple integrator trajectories of the form (22) with their corre-
sponding jerk inputs jk(t), the goal is to determine whether
corresponding inputs to the true system f and ω, as used in
(1) and (2), satisfy feasibility requirements of Section II-A1.
The choice of T is revisited when describing the recursive
implementation, below. The tests are designed with a focus on
computational speed, and provide sufficient, but not necessary,
conditions for both feasibility and infeasibility – meaning that
some motion primitives will be indeterminable with respect to
these tests.

1) Thrust: The interval T is feasible with respect to the
thrust limits (4) if and only if

max
t∈T

f(t)2 ≤ f2
max and (27)

min
t∈T

f(t)2 ≥ f2
min. (28)

Squaring (9) yields

f2 = ‖ẍ− g‖2 =

3∑
k=1

(ẍk − gk)
2 (29)

where gk is the component of gravity in axis k. Combin-
ing (27)-(29), the thrust constraints can be interpreted as
spherical constraints on the acceleration.

By taking the per-axis extrema of (29) the below bounds
follow.

max
t∈T

(ẍk(t)− gk)2 ≤ max
t∈T

f(t)2 for k ∈ {1, 2, 3} (30)

max
t∈T

f(t)2 ≤
3∑
k=1

max
t∈T

(ẍk(t)− gk)2 (31)

min
t∈T

f(t)2 ≥
3∑
k=1

min
t∈T

(ẍk(t)− gk)2 (32)

These bounds will be used as follows: if the left hand side
of (30) is greater than fmax, the interval is definitely infeasible,
while if both the right hand side of (31) is less than fmax and
the right hand side of (32) is greater than fmin, the interval is
definitely feasible with respect to the thrust constraints.

Note that the value ẍk−gk as given by (22) is a third order
polynomial in time, meaning that its maximum and minimum
(denoted ¯̈xk and ẍk, respectively) can be found in closed form
by solving for the roots of a quadratic and evaluating ẍk− gk
at at most two points strictly inside T , and at the boundaries
of T . The extrema of (ẍk − gk)

2 then follow as

max
t∈T

(ẍk(t)− gk)2 = max {¯̈x2
k, ẍ

2
k} (33)

min
t∈T

(ẍk(t)− gk)2 =

{
min {¯̈x2

k, ẍ
2
k} if ¯̈xk · ẍk ≥ 0

0 otherwise,
(34)

where ¯̈xk · ẍk < 0 implies a sign change (and thus a zero
crossing) of ẍk(t)− gk in T .

Thus, from (30), a sufficient criterion for input infeasibility
of the section is if

max {¯̈x2
k, ẍ

2
k} > fmax. (35)

Similarly, from (31)-(32), a sufficient criterion for feasibility
is if both

3∑
k=1

max {¯̈x2
k, ẍ

2
k} ≤ fmax and (36)

3∑
k=1

min {¯̈x2
k, ẍ

2
k} ≥ fmin (37)

hold. If neither criterion (35) nor (36)-(37) applies, the section
is marked as indeterminate with respect to thrust feasibility.

2) Body rates: The magnitude of the body rates can be
bounded as a function of the jerk and thrust as below:

ω2
1 + ω2

2 ≤
1

f2
‖j‖2 . (38)

This follows from squaring (12), and using the following
induced norm: ∥∥∥∥∥∥

1 0 0
0 1 0
0 0 0

∥∥∥∥∥∥ ≤ 1. (39)

The right hand side of (38) can be bounded from above
by ω̄2, defined as below, which then also provides an upper
bound for the sum ω2

1 +ω2
2 . The terms in the denominator are

evaluated as in (34).

ω2
1 + ω2

2 ≤
1

f2
‖j‖2 ≤ ω̄2 =

3∑
k=1

max
t∈T

jk(t)2

3∑
k=1

min
t∈T

(ẍk(t)− gk)2

(40)

Using the above equation, and assuming ω3 = 0, the time
interval T can be marked as feasible w.r.t. the body rate
input if ω̄2 ≤ ω2

max, otherwise the section is marked as
indeterminate.

3) Recursive implementation: The feasibility of a given
time interval T ⊆ [0, T ] is tested by applying the above two
tests on T . If both tests return feasible, T is input feasible and
the algorithm terminates; if one of the tests returns infeasible,
the algorithm terminates with the motion over T marked as
input infeasible. Otherwise, the section is divided in half, such
that

τ 1
2

=
τ1 + τ2

2
(41)

T1 = [τ1, τ 1
2
], T2 = [τ 1

2
, τ2]. (42)

If the time interval τ 1
2
− τ1 is smaller than some user

defined minimum ∆τ , the algorithm terminates with the
primitive marked indeterminable. Otherwise, the algorithm is
recursively applied first to T1: if the result is feasible, the
algorithm is recursively applied to T2. If T2 also terminates as a
feasible section, the entire primitive can be marked as feasible,
otherwise the primitive is rejected as infeasible/indeterminable.
Thus, the test returns one of three outcomes:
• the inputs are provably feasible,
• the inputs are provably infeasible, or
• the tests were indeterminate, feasibility could not be

established.
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Fig. 3. Visualisation of the recursive implementation of the thrust feasibility
test: The vehicle thrust limits fmin and fmax are shown as dashed lines, and the
thrust trajectory is the dotted curve. First, the minimum and maximum bounds
of (36) and (37) are calculated for the entire motion primitive, shown as the
dash-dotted lines in the top plot. Because these bounds exceed the vehicle
limits, the section is halved, and the tests are applied to each half (second
plot). The left hand side section’s bounds are now within the limits, so this
section is marked feasible with respect to the thrust bounds (shown shaded in
the plot), while the second half is again indeterminate. This is halved again,
in the third plot, and a section is yet again halved in the fourth plot. Now, all
sections are feasible with respect to the thrust limits, and the test terminates.
Note that, in the implementation, the thrust infeasibility test of (35) and the
body rate feasibility test (40) will be done simultaneously.

Note that the interval upper bound of (33) is monotonically
nonincreasing with decreasing length of the interval T , and
similarly the lower bound of (34) is monotonically nonde-
creasing.

Furthermore, note that as τ 1
2
− τ1 tends to zero the right

hand sides of (31)-(32) converge and the thrust feasibility test
becomes exact. This does not, however, apply to the body rate
feasibility test due to the induced norm in (39).

The recursive implementation of the sufficient thrust feasi-
bility tests of (36)-(37) is visualised for an example motion
primitive in Fig. 3.

4) Remark on convex approximations of thrust-feasible re-
gion: The feasible acceleration space of the vehicle follows
from (27)-(29), and is non-convex due to the positive minimum
thrust value. This is visualised in Fig. 4. Nonetheless, in
the limit, the presented recursive thrust input test allows for
testing feasibility over the entire thrust feasible space. This is
an advantage when compared to approaches that require the
construction of convex approximations of the feasible space
(e.g. [20]). Consider, for example, a trajectory that begins
with zero acceleration and ends with a final acceleration
of −2g (i.e. the quadrocopter is upside down at the end of the
manoeuvre) – such an example is shown in Fig. 4. The straight
line connecting the initial and final accelerations crosses
through the acceleration infeasible zone due to minimum

thrust. Therefore no convex approximation can be constructed
in the acceleration space in which to evaluate this trajectory.

B. Affine translational variable constraints

Referring to (22), it can be seen that calculating the range
of some linear combination of the system’s translational vari-
ables σ(t) (of the form (8)) can be done by solving for the
extrema of a polynomial of order at most five. This involves
finding the roots of its derivative (a polynomial of order at
most four) for which closed form solutions exist [26].

This is useful, for example, to verify that the quadrocopter
does not fly into the ground, or that the position of the
quadrocopter remains within some allowable flight space.
Specifically, any planar position constraint can be specified by
specifying that the inner product of the quadrocopter’s position
with the normal of the plane is greater than some constant
value. It can also be used to calculate a bound on the vehicle’s
maximum velocity, which could be useful in some computer
vision applications (e.g. [27]). Furthermore, an affine bound
on the vehicle’s acceleration can be interpreted as a bound on
the tilt of the quadrocopter’s e3 axis, through (1).

V. CHOICE OF COORDINATE SYSTEM

Because the Euclidean norm used in the cost (13) is
invariant under rotation, the optimal primitive for some given
problem will be the same when the problem is posed in any
inertial frame, despite the axes being solved for independently
of one another.

The Euclidean norm is also used in the feasibility tests of
Section IV. In the limit, as the length of the time interval T
tends to zero, both the thrust and body rates feasibility tests
become invariant under rotation, and thus independent of
the choice of coordinate system. The affine constraints of
Section IV-B can be trivially transformed from one coordinate
system to another, such that there exists no preferred coordi-
nate system for a set of constraints. This allows the designer
the freedom to pose the motion primitive generation problem
in the most convenient inertial coordinate system.

VI. GUARANTEEING FEASIBILITY

For some classes of trajectory, the existence of a feasible
motion primitive can be guaranteed a priori, without running
the tests described in the preceding section.

For the specific case of primitives starting and ending at
rest (zero velocity, zero acceleration, and a given end point),
a bound on the end time T will be explicitly calculated in
dependence of the translation distance, such that any end time
larger than this bound is guaranteed to be feasible with respect
to the input constraints. Furthermore, the position trajectory
for such rest-to-rest primitives is shown to remain on the
straight line segment between the initial and final positions.
Thus, given a convex allowable flight space, all primitives
that start and end at rest and within the allowable flight space
will remain within the allowable flight space for the entire
trajectory.

The input feasibility of general motion primitives, with arbi-
trary initial and final accelerations and velocities, is also briefly
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Fig. 4. Example trajectory demonstrating non-convexity of the feasible acceleration space. The trajectory moves an initially stationary quadrocopter 10m
horizontally, ending at zero velocity and with final acceleration af = −2g in 2 s (i.e. the quadrocopter is upside down at the end). The left-most plot shows
the position trajectory of the vehicle, the middle plots show the inputs during the trajectory (with the shaded regions being infeasible). The right-hand side
plot shows the acceleration trajectory in the acceleration space, where the two concentric circles represent the minimum and maximum thrust limits (and are
centred at g) for ẍ2 = 0. The axes are chosen such that x3 points opposite to gravity, and there is no motion along x2. Note the non-convexity of the feasible
acceleration space.

discussed. It should be noted that those motion primitives
which can be guaranteed to be feasible a priori will be a
conservative subset of the primitives which can be shown to
be feasible a posteriori using the recursive tests described in
Section IV. Further discussion is provided in Section VII.

A. Rest-to-rest primitives

First, an upper bound on the lowest end time T at which
a rest-to-rest primitive becomes feasible with respect to the
input constraints is calculated in dependence of the translation
distance. Without loss of generality it is assumed that the
quadrocopter’s initial position coincides with the origin, and
the problem is posed in a reference frame such that the final
position is given as (pf , 0, 0), with pf being the distance from
the origin to the final location, such that pf ≥ 0.

From (25) it is clear that the optimal position trajectory
along x2 and x3 has zero position for the duration of the
primitive, and therefore also zero acceleration and velocity.

1) Input feasibility: The acceleration trajectory along axis 1
is calculated by solving the motion coefficients with (25), and
then substituting into (22), such that

ẍ1(t) = 60
t

T 3
pf − 180

t2

T 4
pf + 120

t3

T 5
pf . (43)

Introducing the variable ξ ∈ [0, 1] such that t = ξT , and
substituting for the above yields

ẍ1(ξT ) =
60pf
T 2

(
ξ − 3ξ2 + 2ξ3

)
(44)

for which the extrema lie at

ξ∗ =
1

2
±
√

3

6
(45)

ẍ1(ξ∗T ) = ∓10
√

3pf
3T 2

. (46)

Exploiting the observation that |ẍ(ξ∗T )| decreases mono-
tonically with increasing T , an upper bound Tfmin for the end
time at which such a primitive becomes feasible with respect to

the minimum thrust constraint can be calculated. This is done
by substituting (46) for the sufficient criterion of (32), under
the worst case assumption that the motion is aligned with
gravity, i.e. the acceleration in the directions perpendicular to
gravity are zero. Then

Tfmin
=

√
10pf√

3 (‖g‖ − fmin)
. (47)

Similarly, an upper bound Tfmax
for the end time at which

the primitive becomes feasible with respect to the maximum
thrust constraint can be calculated by substituting the maxi-
mum acceleration bound of (46) into the sufficient criterion of
(31). Again, the worst case occurs when the motion is aligned
with gravity, and the final time can be calculated as

Tfmax =

√
10pf√

3 (fmax − ‖g‖)
. (48)

Finally, an upper bound Tωmax
for the end time at which

the primitive satisfies the body rates constraint is calculated
as follows. First, the jerk along axis 1 is solved for with (21),
and t = ξT is substituted as before, to give

j1(ξT ) =
60pf
T 3

(
6ξ2 − 6ξ + 1

)
. (49)

This has extrema at ξ ∈ {0, 1
2 , 1}, and the maximum

of |j1(ξT )| occurs at ξ∗ ∈ {0, 1}, so that

max
t∈[0,T ]

|ji(t)| = |ji(ξ∗T )| = 60pf
T 3

. (50)

Again, this maximum is monotonically decreasing for increas-
ing end time T .

This value is then substituted for the numerator of (40), and
it is assumed that the primitive satisfies the minimum thrust
constraint, so that fmin can be substituted for the denominator.
This makes the conservative assumption that the maximum
jerk value is achieved at the same time as the minimum thrust



value. Equating the result to ωmax, and solving for Tωmax

yields

Tωmax
= 3

√
60pf

ωmaxfmin
. (51)

Note that this requires fmin to be strictly positive (instead of
non-negative as specified in (4)).

Combining (47), (48), and (51), any rest-to-rest primitive
within a ball of radius pf is guaranteed to be feasible with
respect to the input constraints of Section II-A1 if the end
time T is chosen to satisfy the below bound.

T ≥ max{Tfmin
, Tfmax

, Tωmax
}. (52)

The conservatism of this bound is investigated in Section VII.
2) Position feasibility: It will be shown that the position

along a rest-to-rest primitive remains on the straight line
segment between the initial and final positions, independent
of the end time T . Solving the full position trajectory as given
in Section III-C1 and substituting p0 = 0, v0 = vf = 0
and a0 = af = 0, the position trajectory in axis 1 is given by

x1(t) = pf

(
6
t5

T 5
− 15

t4

T 4
+ 10

t3

T 3

)
(53)

with pf ≥ 0 the desired displacement along axis 1. Substi-
tuting again for ξ = t/T such that ξ ∈ [0, 1], the position
trajectory can be rewritten as

x1 (ξT ) = pf
(
6ξ5 − 15ξ4 + 10ξ3

)
(54)

It is now straight forward to show that the extrema of x1(ξT )
are at ξ∗ ∈ {0, 1}, and specifically that

x1(t) ∈ [0, pf ] . (55)

Axes 2 and 3 will remain at zero, so that the rest-to-rest
primitive will travel along the straight line segment connecting
the initial and final positions in three dimensional space.
Therefore, given a convex allowable flight space, if the initial
and final position are in the allowable flight space, all rest-to-
rest primitives will remain within the allowable flight space.

3) Maximum velocity: In some applications it is desirable
to limit the maximum velocity of the vehicle along the motion,
most notably where the quadrocopter’s pose is estimated with
onboard vision [27]. For rest-to-rest primitives of duration T ,
the maximum speed occurs at t = T/2, and equals

max
t∈[0,T ]

‖ẋ(t)‖ = max
t∈[0,T ]

|ẋ1(t)| = 15

8

pf
T
. (56)

Thus, given some maximum allowable velocity magnitude and
a distance to translate, the primitive end time T at which
this maximum velocity will not be exceeded can be readily
calculated from the above.

B. Guarantees for general primitives

For general primitives, with nonzero initial and/or final
conditions, and with possibly unconstrained end states, it is
harder to provide conditions under which feasible primitives
can be guaranteed. Indeed, cases can be constructed which
are input feasible for some specific end times, but become

infeasible if the time is extended. It can however be stated for
a motion primitive along an axis k (with arbitrary initial and
final conditions and with any combination of final translational
variable constraints in the goal state) that as the end time T
tends to infinity:

• the magnitude of the jerk trajectory tends to zero, and
• the magnitude of the acceleration trajectory becomes

independent of both initial and final position and velocity
constraints, and can be bounded as

lim
T→∞

max
t∈[0,T ]

ẍk(t) ≤ max{|ak0| , |akf |} (57)

lim
T→∞

min
t∈[0,T ]

ẍk(t) ≥ −max{|ak0| , |akf |}. (58)

If the final acceleration is not specified, the acceleration
bounds are

lim
T→∞

max
t∈[0,T ]

ẍk(t) ≤ |ak0| (59)

lim
T→∞

min
t∈[0,T ]

ẍk(t) ≥ − |ak0| . (60)

The calculations to show this can be found in Appendix B.
This knowledge can then be combined with the input

feasibility constraints (similar to the rest-to-rest primitives,
above), to guarantee the existence of an input feasible motion
primitive based on the values of |a0| and |af |, at least as the
end time is extended to infinity. Furthermore, by expanding
the acceleration trajectory from (22) and applying the triangle
inequality, the magnitude of the acceleration for finite end
times can also be bounded. This bound can then be used to
calculate an upper bound on the end time T at which the
primitive will be feasible with respect to the inputs, however
this bound will typically be very conservative.

ALGORITHM OVERVIEW

The focus in the preceding sections is on the generation
and feasibility verification for a quadrocopter motion primitive,
with an arbitrary initial state, to a set of goal end translational
variables σ̂i in a given time T . The resulting acceleration
trajectory, along any axis, is a cubic polynomial in time.
These trajectories minimize an upper bound representative of a
product of the inputs, and computationally convenient methods
are presented to test whether these trajectories are feasible with
respect to input constraints, and with respect to bounds on
linear combinations of the translational variables. Guarantees
on feasible trajectories are given, with a specific focus on rest-
to-rest trajectories.

In the following section the set of end times and goal end
translational variables for which feasible trajectories can be
found with the presented approach is compared to the total set
of feasible trajectories, for the class of rest-to-rest trajectories.
The computational cost of the presented approach is investi-
gated in Section VIII. Section IX describes an experimental
demonstration, where the presented primitives are incorporated
into a larger trajectory generator.



VII. CONSERVATISM

If the motion primitive computed with the presented ap-
proach is not feasible, it does not imply that no feasible
trajectory is possible. There are two reasons for this:
• the trajectories generated in Section III are restricted

to have accelerations described by cubic polynomials in
time, and

• the feasibility verification of Section IV is sufficient, but
not necessary.

This section attempts to give an indication of the space of
end times T and end translational variables σ̂i for which a
quadrocopter could fly a trajectory, but the presented method
is unable to find a feasible motion primitive. This section will
specifically consider rest-to-rest motions.

In [28] an algorithm is given to compute minimum time
trajectories which satisfy Pontryagin’s minimum principle, for
the quadrocopter system dynamics and input constraints of
Section II-A. These trajectories represent the surface of the
feasible region for quadrocopter rest-to-rest trajectories: given
a desired final translation, a feasible trajectory exists with
any end time larger than the time optimal end time (e.g.
by executing the time optimal trajectory, and then simply
waiting). By definition, no feasible trajectory exists for shorter
end times.

Fig. 5 compares this feasible region to those trajectories that
can be found with the methods of Section III and Section IV.
The system limits were set as in [28], with fmin = 1 m/s2,
fmax = 20 m/s2, ωmax = 10 rad/s. For a given translation
distance d, the desired end translational variables are defined
such that all components are zero, except the position in the
direction of motion which is set to d.

For each distance d, the space of feasible end times was
determined as follows. A set of end times was generated,
starting at zero and with increments of 1 ms. For each end time,
a motion primitive was generated, and the set of end distances
and end times (T, d) for which an input feasible trajectory
was found is shown in Fig. 5. For the sake of comparison,
the guaranteed feasible end time given in Section VI-A is also
plotted.

The fastest feasible manoeuvre found with the presented
algorithm requires on the order of 50% longer than the time
optimal trajectory of [28] when translating vertically, and on
the order of 20% longer when translating horizontally. From
the figure it can be seen that the guaranteed feasible end time
of Section VI is quite conservative, requiring the order of
three times longer for the manoeuvre than the time optimal
trajectory. However, these trajectories can be computed at
very low cost, specifically requiring no iterations to determine
feasibility.

VIII. COMPUTATION TIMES

This section presents statistics for the computational cost
of the presented algorithm when implemented on a standard
laptop computer, and on a standard microcontroller. The
algorithm was implemented in C++. Except for setting the
compiler optimisation to maximum, no systematic attempt was
made to optimise the code for speed. To evaluate the time
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Fig. 5. The set of horizontal/vertical final displacements for which the
presented algorithm is able to find input feasible trajectories (the lightly
shaded area above the dashed line), and the set of final displacements and
end times for which no trajectories are possible (the darkly shaded area, with
the boundary as given by the time optimal trajectories of [28]). The dotted
line is the conservative end time guarantee as calculated in Section VI-A. The
white area represents displacements that could be reached by the vehicle, but
where the presented method cannot find a feasible motion primitive.

required to compute the motion primitives described in this
paper, primitives were generated for a quadrocopter starting
at rest, at the origin, and translating to a final position chosen
uniformly at random in a box with side length 4 m, centred
at the origin. The target end velocity and acceleration were
also chosen uniformly between −2 m/s and 2 m/s, and −2 m/s2

and 2 m/s2, respectively. The end time was chosen uniformly
at random between 0.2 s and 10 s. The algorithm was imple-
mented on a laptop computer with an Intel Core i7-3720QM
CPU running at 2.6GHz, with 8GB of RAM, with the solver
compiled with Microsoft Visual C++ 11.0. The solver was run
as a single thread.

For one hundred million such motion primitives, the average
computation time per primitive was measured to be 1.05 µs, or
approximately 950’000 primitives per second. This includes
• generating the primitive,
• verifying that the inputs along the trajectory are feasible

(with the recursive test of Section IV-A3, for fmin =
5 m/s2, fmax = 25 m/s2, and ωmax = 20 rad/s, and

• verifying that the position of the quadrocopter stays
within a 4 × 4 × 4m box centred at the origin (that
is, six affine constraints of the form (8) as described in
Section IV-B).

Of the primitives, 91.6% tested feasible with respect to
the inputs, 6.4% infeasible, and the remaining 2.0% were
indeterminate.

If the position feasibility test is not performed, the average
computation time drops to 0.74 µs, again averaged over the
generation of one hundred million random primitives, or
approximately 1.3 million per second.

The algorithm was also implemented on the STM32-F4
microcontroller, which costs approximately e10 and is, for
example, used on the open-source PX4 autopilot system [29].



One million random primitives were generated, with the same
parameters as above. The average execution time was 149 µs
per primitive (or approximately 6’700 primitives per second),
including trajectory generation, input feasibility, and position
feasibility tests. If the position feasibility test is not performed,
the average computation time drops to 95 µs per primitive, or
approximately 10’500 per second.

IX. EXAMPLE APPLICATION AND EXPERIMENTAL RESULTS

This section presents an example of a high level trajectory
generator that uses the motion primitives to achieve a high
level goal (as illustrated in Fig. 1). The high-level goal is for a
quadrocopter, with an attached net, to catch a ball thrown by a
person. This task was chosen due to its highly dynamic three-
dimensional nature, the requirement for real-time trajectory
generation, and the existence of a variety of trajectories which
would achieve the goal of catching the ball. All the presented
data is from actual flight experiments.

The algorithm is applied in a naı̈ve brute force approach,
to illustrate the ease with which a complex, highly dynamic,
quadrocopter task may be encoded and solved. The multimedia
attachment contains a video showing the quadrocopter catch-
ing the ball.

To catch the ball, the motion primitive generator is used in
two different ways:

• to generate trajectories to a catching point, starting from
the quadrocopter’s current state and ending at a state and
time at which the ball enters the attached net, and

• to generate stopping trajectories, which are used to bring
the quadrocopter to rest after the ball enters the net.

The experiments were conducted in the Flying Machine
Arena, a space equipped with an overhead motion capture
system which tracks the pose of the quadrocopters and the
position of the balls. A PC processes the motion capture
data, and generates commands that are transmitted wirelessly
to the vehicles at 50 Hz. More information on the system
can be found in [30]. The quadrocopter used is a modified
Ascending Technologies “Hummingbird” [31], with a net
attached approximately 18 cm above the vehicle’s centre of
mass (see Fig. 6).

Fig. 6. A quadrocopter with attached catching net, as used to demonstrate
the algorithm. The centre of the net is mounted above the vehicle’s centre of
mass in the quadrocopter’s e3 direction.

1) Catching trajectories: The computational speed of the
presented approach is exploited to evaluate many different
ways of catching the ball. This is done with a naı̈ve brute
force approach, where thousands of different primitives are
generated at every controller step. Each primitive encodes a
different strategy to catch the ball, of which infeasible prim-
itives are rejected and the ‘best’ is kept from the remainder.
This is done in real-time, and used as an implicit feedback law,
with one controller cycle typically involving the evaluation of
thousands of candidate motion primitives. This task is related
to that of hitting a ball with a racket attached to a quadrocopter,
as was previously investigated in [32] and [21].

The catching task is encoded in the format of Section II-B
by stipulating that the centre of the net must be at the same
position as the ball, and the velocity of the quadrocopter
perpendicular to the ball’s flight must be zero. The requirement
on the velocity reduces the impact of timing errors on the
system. Because the centre of the net is not at the centre
of the quadrocopter, the goal end state must also include
the quadrocopter’s normal direction e3 – given some ball
position, there exists a family of quadrocopter positions and
normal directions which will place the centre of the net at
the ball’s position. The desired end translational variables σ̂
thus contains the quadrocopter’s position, its normal direction
(thus acceleration), and its velocity components perpendicular
to the ball’s velocity (thus specifying eight of the nine possible
variables). The strategy for specifying these eight variables is
described below.

The ball is modelled as a point mass with quadratic drag,
and at every controller update step its trajectory is predicted
until it hits the floor. This is discretized to generate a set of
possible catching times T (k), with the discretization time step
size chosen such that at most 20 end times are generated, and
that the time step size is no smaller than the controller update
period.

For each of these possible catching times T (k), a set of
candidate desired end translational variables σ̂(j,k) is gener-
ated as follows. The quadrocopter’s goal normal direction is
generated by generating 49 candidate end normals, centred
around the direction opposing the ball’s velocity at time T (k).
To convert these candidate end normals to goal accelerations
it is necessary to further specify an end thrust value for each.
The goal acceleration can then be calculated with (1). For each
of the orientations generated, ten candidate final thrust values
are used, spaced uniformly between fmin and fmax.

Given an end normal direction, the required quadrocopter
position at the catching instant can be calculated as that
position placing the centre of the net at the ball (for the 49
different normal direction candidates, the end location of the
vehicle centre of mass will be located on a sphere centred at
the ball’s position).

The quadrocopter’s velocity is required to be zero in the
directions perpendicular to the ball’s velocity at the catching
time, while the quadrocopter velocity component parallel to
the ball’s velocity is left free. Thus eight components of the
end translational variables in (7) are specified.

For each of the candidate catching instants, there are 490
candidate end states to be evaluated. Because the number of
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Fig. 7. Sampled motion primitives at one time step of a catching manoeuvre: On the left is shown the quadrocopter’s centre of mass for 81 candidate
primitives to catch a thrown ball. The primitives are shown as solid lines, starting at the position (0, 1)m, and the ball’s predicted trajectory is shown as
a dash-dotted line, moving from left to right in the figure. The ball’s position at each of three candidate catching instants is shown as a solid circle. Each
candidate primitive places the centre of the net at the ball, with the quadrocopter’s velocity at that instant parallel to the ball’s velocity. Note that the final
orientation is a parameter that is searched over, as is the thrust value at the catching instant. A total of 2’812 candidates were evaluated at this time instant,
which required 3.05ms of computation. The primitives shown passing through the ground (at 0m height) are eliminated when the position boundaries are
evaluated. The right most two plots show detail of some of these primitives, showing the quadrocopter’s orientation along the primitives. At the top-right plot,
three candidate primitives are shown with different end orientations (and only showing orientations lying in the plane of the plot). The lower right plot shows
primitives to the same orientation, but with varying end thrusts.

end times is limited to 20, this means that there are at most
9’800 catching primitives of the form

(
T (k), σ̂(j,k)

)
calculated

at any controller update step.
Next the candidate primitive is tested for feasibility with

respect to the inputs as described in Section IV-A, with
the input limits set to fmin = 5 m/s2, fmax = 25 m/s2

and ωmax = 20 rad/s. Then the candidate is tested for position
feasibility, where the position trajectory is verified to remain
inside a safe box as described in Section IV-B – this is to
remove trajectories that would either collide with the floor
or the walls. If the primitive fails either of these tests, it is
rejected.

Some such candidate motion primitives are visualised in
Fig. 7.

For each candidate catching primitive remaining, a stopping
trajectory will be searched for (described in more detail
below). If no stopping trajectory for a candidate catching
primitive is found that satisfies both the input feasibility
constraints and position constraints, that catching candidate
is removed from the set.

Now, each remaining candidate is feasible with respect to
input and position constraints, both for catching the ball, and
the stopping manoeuvre after the ball is caught. From this
set, that candidate with the lowest cost JΣ (as defined in
Section III-C3) is selected as the best.

2) Stopping trajectories: At the catching instant, a catching
candidate trajectory will generally have a nonzero velocity
and acceleration, making it necessary to generate trajectories
from this state to rest. For these stopping trajectories, the goal
end state translational variables specify that the velocity and
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Fig. 8. Sampled stopping motion primitives: Two candidate stopping
primitives bringing the quadrocopter to rest, starting at the catching instant of
the optimal catching primitive from Fig. 7. The quadrocopter moves from right
to left in both figures. The upper stopping candidate brings the quadrocopter
to rest in 2 s, the lower in 1 s.

acceleration must be zero, but leave the position unspecified.
The primitive duration is sampled from a set of 6 possibilities,
ranging from 2 down to 0.25 seconds. The search is terminated
after the first stopping primitive is found that is feasible with
respect to the inputs and the position constraints. Two such
stopping primitives are shown in Fig. 8.

3) Closed loop control: Each remaining candidate catching
primitive is feasible with respect to the input constraints, the
position box constraints, and has a feasible stopping primitive.
From these, the catching candidate with the lowest cost value
is then selected as the best. This algorithm is then applied as an
implicit feedback law, as in model predictive control [33], such
that the entire process is repeated at the controller frequency
of 50 Hz – thus the high level trajectory generator must run in



Fig. 9. The actual trajectory flown to catch the ball shown in Fig. 7.
The top-most plot shows the ball’s flight shown as a dash-dotted line, and
the ball’s position at the catching instant shown as a solid circle. Note that
the offset between the vehicle and the ball at the catching instant is due
to the net’s offset from the quadrocopter’s centre of mass. The three lower
plots show the manoeuvre history, until the catching instant, with (from top
to bottom) the quadrocopter’s velocity, attitude, and thrust commands. The
attitude of the vehicle is shown using the conventional 3-2-1 Euler yaw-pitch-
roll sequence [24]. The bottom plot shows the thrust command, which can
be seen to be within the limits of 5 to 25m s−2. It should be noted that the
motion primitives are applied as an implicit feedback law, and thus the flown
trajectory does not correspond to any single planned motion primitive.

under 20 ms. This allows the system to implicitly update the
trajectories as the prediction of the ball’s flight becomes more
precise, as well as compensate for disturbances acting on the
quadrocopter.

If no candidate catching primitive remains, the last feasible
trajectory is used as reference trajectory, tracked under feed-
back control. This typically happens at the end of the motion,
as the end time goes to zero. After the ball is caught, the
stopping primitive is executed. The stopping primitive is used
as a reference trajectory tracked by the controller described
in [30].

The completed catching trajectory corresponding to the can-
didates of Fig. 7 is shown in Fig. 9. The catching manoeuvre
lasted 1.63 s, during which a total of 375’985 motion prim-
itives were evaluated (including both catching and stopping

manoeuvres). To catch the ball, the quadrocopter translated a
distance of 2.93 m, having started at rest.

The attached video shows that the quadrocopter manages to
catch thrown balls, validating the brute-force approach used
to encode this problem. The video also shows the acrobatic
nature of the resulting manoeuvres.

X. CONCLUSION

This paper presents a motion primitive that is computation-
ally efficient both to generate, and to test for feasibility. The
motion primitive starts at an arbitrary quadrocopter state, and
generates a thrice differentiable position trajectory guiding the
quadrocopter to a set of desired end translational variables
(consisting of any combination of components of the vehicle’s
position, velocity, and acceleration). The acceleration allows to
encode two components of the vehicle’s attitude. The time to
calculate a motion primitive and apply input and translational
feasibility tests is shown to be on the order of a microsecond
on a standard laptop computer.

The algorithm is experimentally demonstrated by catching a
thrown ball with a quadrocopter, where it is used as part of an
implicit feedback controller. In the application, thousands of
candidate primitives are calculated and evaluated per controller
update step, allowing the search over a large space of possible
catching manoeuvres.

The algorithm appears well-suited to problems requiring
to search over a large trajectory space, such as probabilistic
planning algorithms [34], or the problem of planning for
dynamic tasks with multiple vehicles in real time, similar to
[35]. The algorithm may be especially useful if the high-level
goal is described by non-convex constraints.

The presented motion primitive is independent of the
quadrocopter’s rotation about it’s thrust axis (the Euler yaw
angle). This is reflected in that the resulting commands do
not specify a yaw rate, ω3. A useful extension would be to
compute an input trajectory for the quadrocopter yaw rate to
achieve a desired final yaw angle.

It is shown that constraints on affine combinations of
the quadrocopter’s position, velocity, and acceleration may
be tested efficiently. An interesting extension would be to
investigate efficient tests for alternative constraint sets, for
example more general convex sets.

Implementations of the algorithm in both Python and C++
can be found at [19].

APPENDIX A
SOLUTIONS FOR DIFFERENT END STATES CONSTRAINTS

Here the solutions for each combination of fixed end state is
given in closed form for one axis. The states can be recovered
by evaluating (22), and the trajectory cost from (26). The
values ∆p, ∆v and ∆a are calculated by (24).

Fixed position, velocity, and accelerationαβ
γ

 =
1

T 5

 720 −360T 60T 2

−360T 168T 2 −24T 3

60T 2 −24T 3 3T 4

∆p
∆v
∆a

 (61)



Fixed position and velocityαβ
γ

 =
1

T 5

 320 −120T
−200T 72T 2

40T 2 −12T 3

[∆p
∆v

]
(62)

Fixed position and accelerationαβ
γ

 =
1

2T 5

 90 −15T 2

−90T 15T 3

30T 2 −3T 4

[∆p
∆a

]
(63)

Fixed velocity and accelerationαβ
γ

 =
1

T 3

 0 0
−12 6T
6T −2T 2

[∆v
∆a

]
(64)

Fixed position αβ
γ

 =
1

T 5

 20
−20T
10T 2

∆p (65)

Fixed velocity αβ
γ

 =
1

T 3

 0
−3
3T

∆v (66)

Fixed accelerationαβ
γ

 =
1

T

0
0
1

∆a (67)

APPENDIX B
DERIVATION OF ACCELERATION BOUNDS

In Section VI-B the claim is made that the acceleration can
be bounded as the end time T tends to infinity. This is shown
here for each of the different combination of end translational
variable constraints. The constraints will be divided into those
that constrain the final acceleration, and those that do not.

A. Constrained final acceleration

If the final acceleration is specified, it will be shown that
the acceleration can be bounded as in (57)-(58).

1) Fixed position, velocity, and acceleration: Substituting
for the parameters α, β, and γ from (61) into (22), the accel-
eration trajectory for a fully specified set of end translational
variables is

ẍ(t) =a0 −
9a0

T
t+

3af
T
t+

18a0

T 2
t2 − 12af

T 2
t2

− 36t

T 2
v0 −

24t

T 2
vf −

10a0

T 3
t3 +

10af
T 3

t3

− 60p0

T 3
t+

60pf
T 3

t+
96v0

T 3
t2 +

84vf
T 3

t2

+
180p0

T 4
t2 − 180pf

T 4
t2 − 60v0

T 4
t3 − 60vf

T 4
t3

− 120p0

T 5
t3 +

120pf
T 5

t3.

(68)

Introducing the variable ξ := t/T ∈ [0, 1] and letting
T →∞, yields

lim
T→∞

ẍ(ξT ) =− 10a0ξ
3 + 18a0ξ

2 − 9a0ξ

+ a0 + 10afξ
3 − 12afξ

2 + 3afξ.
(69)

The above does not contain the initial and final position or
velocity, as was claimed in Section VI-B. This means that in
the limit as the duration T tends to infinity, the acceleration
trajectory becomes independent of the position and velocity,
for a fully defined end state. Next, it will be shown that (57)
and (58) hold.

To do this, three cases will be examined independently:
• Case 1: a0 = af = 0,
• Case 2: |af | ≤ |a0|, and
• Case 3: |af | > |a0|.
For Case I, trivially, the right hand side of (69) goes to zero,

such that

lim
T→∞

ẍ(ξT ) = 0. (70)

For Case II, we define the ratio ρ2 = af/a0 ∈ [−1, 1]. It
will be shown that the ratio between the maximum acceleration
along the trajectory and the initial acceleration a0 is in the
range [−1, 1]. Substituting into (69), yields the acceleration
ratio as a function φ2(ξ, ρ2) of two variables:

φ2(ξ, ρ2) := lim
T→∞

ẍ(ξT )|af=ρ2a0

a0

=ξ3 (10ρ1 − 10) + ξ2 (−12ρ1 + 18)

+ 3ξ (ρ1 − 3) + 1

(71)

The extrema of φ2 over ξ ∈ [0, 1] and ρ2 ∈ [−1, 1] can be
calculated straight-forwardly, and the minimum and maximum
value of φ2 calculated. From this can be calculated

φ2(ξ, ρ2) ∈ [−1, 1] (72)

from which then follows that ∀ξ ∈ [0, 1], |af | ≤ |a0|:

lim
T→∞

|ẍ(ξT )| ≤ max{|a0| , |af |}. (73)

For Case III, we define the ratio ρ3 = a0/af ∈ (−1, 1).
It will be shown that the ratio between the acceleration
extrema along the trajectory and the acceleration af is in the
range [−1, 1].

Substituting into (69), again yields the acceleration ratio as
a function of two variables φ3(ξ, ρ3):

φ3(ξ, ρ3) := lim
T→∞

ẍ(ξT )|a0=ρ3af

af

=ρ2 + ξ3 (−10ρ2 + 10) + ξ2 (18ρ2 − 12)

− 3ξ (3ρ2 − 1)

(74)

Similar to case 2 before, the extrema of φ3 over ξ ∈ [0, 1]
and ρ3 ∈ [−1, 1] can be calculated. Note that the closed
interval is used for ρ3, for convenience. Then

φ3(ξ, ρ3) ∈ [−1, 1] (75)

from which follows that ∀ξ ∈ [0, 1], |af | > |a0|:

lim
T→∞

|ẍ(ξT )| ≤ max{|a0| , |af |}. (76)



2) Fixed velocity and acceleration: If only the velocity
and acceleration are fixed, the same procedure can be used
as above, specifically evaluating the same three cases. Analo-
gously to (68) the acceleration trajectory is

ẍ(t) =a0 −
4a0

T
t− 2af

T
t+

3a0

T 2
t2 +

3af
T 2

t2

− 6t

T 2
v0 +

6t

T 2
vf +

6v0

T 3
t2 − 6vf

T 3
t2.

(77)

Analogously to (69) the limit can be taken, and the vari-
able ξ introduced:

lim
T→∞

ẍ(ξT ) = 3a0ξ
2 − 4a0ξ + a0 + 3afξ

2 − 2afξ (78)

Applying the same three cases as before, (57)-(58) follow.
3) Fixed acceleration: If only the end acceleration is spec-

ified, the acceleration trajectory is

ẍ(t) =a0 −
a0t

T
+
af t

T
. (79)

From this, and noting that t/T ∈ [0, 1], (57)-(58) follow
trivially.

B. Unconstrained final acceleration

If the final acceleration is not fixed, the procedure of
Section B-A1 must be modified slightly.

1) Fixed position and velocity: Analogously to (69) the
acceleration in this case is

ẍ(t) =a0 −
8a0

T
t+

14a0

T 2
t2 − 28t

T 2
v0 −

12t

T 2
vf

− 20a0t
3

3T 3
− 40p0

T 3
t+

40pf
T 3

t+
64v0

T 3
t2

+
36vf
T 3

t2 +
100p0

T 4
t2 − 100pf

T 4
t2 − 100t3v0

3T 4

− 20vf
T 4

t3 − 160p0t
3

3T 5
+

160pf t
3

3T 5
.

(80)

Introducing again the variable ξ = t/T ∈ [0, 1] and letting
T →∞, yields

lim
T→∞

ẍ(ξt) = −20a0

3
ξ3 + 14a0ξ

2 − 8a0ξ + a0 (81)

For a0 = 0, the right hand side is trivially zero. For a0 6= 0,
the above can be refactored, and for ξ ∈ [0, 1]:

lim
T→∞

ẍ(ξT )

a0
= −20

3
ξ3 + 14ξ2 − 8ξ + 1 ∈

[
−29

75
, 1

]
(82)

From this follow (59)-(60).
2) Fixed position: The acceleration trajectory in this case

is

ẍ(t) =a0 −
5a0

T
t+

5a0

T 2
t2 − 10t

T 2
v0 −

5a0t
3

3T 3

− 10p0

T 3
t+

10pf
T 3

t+
10v0

T 3
t2 +

10p0

T 4
t2

− 10pf
T 4

t2 − 10t3v0

3T 4
− 10p0t

3

3T 5
+

10pf t
3

3T 5
.

(83)

Introducing again the variable ξ = t/T ∈ [0, 1] and letting
T →∞, yields

lim
T→∞

ẍ(ξT ) = −5a0

3
ξ3 + 5a0ξ

2 − 5a0ξ + a0 (84)

For a0 = 0, the right hand side is trivially zero. For a0 6= 0,
the above can be refactored, and for ξ ∈ [0, 1]:

lim
T→∞

ẍ(ξT )

a0
= −5

3
ξ3 + 5ξ2 − 5ξ + 1 ∈

[
−2

3
, 1

]
. (85)

From this follow (59)-(60).
3) Fixed velocity: The acceleration trajectory in this case

is

ẍ(t) =a0 −
3a0

T
t+

3a0t
2

2T 2
− 3t

T 2
v0

+
3t

T 2
vf +

3t2v0

2T 3
− 3t2vf

2T 3
.

(86)

Introducing again the variable ξ = t/T ∈ [0, 1] and letting
T →∞, yields

lim
T→∞

ẍ(ξT ) =
3a0

2
ξ2 − 3a0ξ + a0. (87)

For a0 = 0, the right hand side is trivially zero. For a0 6= 0,
the above can be refactored, and for ξ ∈ [0, 1]:

lim
T→∞

ẍ(ξT )

a0
=

3

2
ξ2 − 3ξ + 1 ∈

[
−1

2
, 1

]
. (88)

From this follow (59)-(60).
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