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Abstract— A robot localization system is presented that
enables a robot to estimate its position within some space by
passively receiving ultra-wideband radio signals from fixed-
position modules. Communication from the fixed-position mod-
ules is one-way, allowing the system to scale to multiple robots.
Furthermore, the system’s high position update rate makes it
suitable to be used in a feedback control system, and enables
the robot to track and perform high-speed, dynamic motions.

This paper describes the algorithmic underpinnings of the
system, discusses design decisions and their impact on the per-
formance of the resulting localization, and highlights challenges
faced during implementation. Performance of the localization
system is experimentally verified through comparison with data
from a motion-capture system. Finally, the system’s application
to robot self-localization is demonstrated through integration
with a quadrocopter.

I. INTRODUCTION

Several systems for robot localization currently exist.
These are often based on acoustic, optical or radio mea-
surements and vary in cost, accuracy and update frequency.
Global Navigation Satellite Systems, for example the Global
Positioning System (GPS) [1], and on-board SLAM algo-
rithms [2] offer decentralized navigation, in which each
robot is capable of localizing itself (self-localizing) within
some environment. Off-board systems, such as motion-
capture systems [3] or ultra-wideband localization (UWB)
systems [4], may also be used for localization and allow
the robot’s position to be computed centrally by collecting
measurements from a set of wired sensors.

This paper presents a localization system that enables a
robot to self-localize based on the reception of UWB radio
signals from fixed-position, wirelessly-connected modules
(hereinafter referred as anchors). These anchors are placed at
known locations, and periodically transmit UWB signals. By
passively receiving these signals and recording their arrival
times, the robot is able to self-localize relative to the anchors
by using either time-of-arrival (TOA) or time-difference-of-
arrival (TDOA) measurements. The system layout is illus-
trated in Fig. 1, and shares many architectural similarities to
GNSS systems (e.g. GPS).

Since the robot is not active in the communication process
and is able to self-localize, its position is not centrally tracked
and anonymous operation is enabled. Furthermore, since the
robot localizes itself passively, the system allows multiple
robots to operate simultaneously within the space, without
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affecting the update rate of the system. This is in contrast
to systems such as [5] and [6], which show how UWB
measurements can be fused in an estimator, but wherein the
robot plays an active role in the communication.

Our intention is that this paper serves as a basis for others
interested in constructing such a localization system. To this
effect, this paper will outline and summarize the theoretical
underpinnings of the system and discuss algorithmic and
implementation challenges. This paper is therefore structured
as follows: In Section II, two schemes for localization, TOA
and TDOA, are compared and contrasted in the context
of robot self-localization. In Section III, the algorithmic
underpinnings of the system are presented and challenges
relating to the synchronization of anchor clocks are presented
and addressed. The performance of the system is quantified
in Section IV through comparison with motion-capture data.
Finally, in Section V, the system’s applicability to robot
self-localization is demonstrated through integration with a
quadrocopter system, enabling the quadrocopter to fly stable,
repeatable and dynamic trajectories.

II. METHODS OF ROBOT LOCALIZATION

Existing results, for example in [6], [7], demonstrate that a
robot can use two-way communication with a set of anchors
in order to self-localize. As presented in [8], it is also possi-
ble for a robot to be localized using one-way communication.
However in these cases, the robot transmits a signal, which is
received by a set of fixed-position receivers. By comparing
reception times of each receiver, it is possible to compute

Fig. 1. The architecture of the localization system presented in this paper
is shown in this figure. A robot receives UWB radio signals from fixed-
position anchors. These anchors periodically transmit UWB signals which
are recorded by the robot and used to localize itself relative to the anchors.
Since the robot is not active in the communication process, the system
allows multiple robots to operate simultaneously and anonymously within
the space.
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the robot’s location centrally using TDOA measurements.
Such an architecture is often used for asset tracking [9],
[10], where it is desirable to know the location of each asset
centrally. This architecture was also employed in [11] to
centrally track and control a swarm of lightweight robots,
each with limited computational power.

In contrast to the research discussed above, the localization
system presented in this paper has an architecture similar to
GPS (refer Fig. 1), whereby a set of fixed-position anchors
transmit signals that are received by robots within the space.
By comparing the arrival time of each signal, a robot is
able to self-localize. Since the robot is not active in this
communication and is able to self-localize based on the
received measurements, the system scales to support multiple
robots simultaneously and anonymously utilizing the space.

Two different methods of localization – TOA and TDOA
– are supported by the presented system, and are compared
in the remainder of this section.

A. Time Difference of Arrival vs Time of Arrival

Localization algorithms based on signal propagation time
can be categorized into those which use the arrival time
of each signal (TOA algorithms), and those which use
the difference between the arrival times of signals (TDOA
algorithms).

A TOA measurement fi is related to the position p of the
robot and the position pi of the transmitting anchor i by:

fi =
‖p−pi‖

c
−Θ+ni (1)

= hi(p,Θ,ni) (2)

where c is the speed of light, Θ is the robot’s clock offset
and ni is the measurement and transmission noise. Note
that, since TOA algorithms calculate time of flight (and
hence distance) using the arrival time at the robot and the
transmission time from the anchor, the robot’s clock must be
synchronized to the anchor’s clock.

On the other hand, a TDOA measurement di, j between the
robot and anchors i and j is given by

di, j =
‖p−pi‖−‖p−pj‖

c
+ni−n j. (3)

Note that TDOA algorithms use the difference between the
arrival times of two signals, and as such, the offset of the
robot’s clock is canceled. Therefore, the robot’s clock does
not need to be synchronized with the anchors’ clocks. While
this leads to a simpler implementation, care must be taken
to correctly handle the correlated noise of different TDOA
measurements.

As illustrated in Fig. 2, localization using TDOA mea-
surements or TOA measurements with an unsynchronized
clock, requires calculation of the intersection of hyperbola
[12], a solution which is quite sensitive to measurement
noise. However, in the case of TOA algorithms, if the robot’s
clock is synchronized to the anchors’ clocks or if two-way
communication is used to omit synchronization, localization

Fig. 2. Geometric solution sets for a given error tolerance. Left: TDOA
and TOA localization with unsynchronized clocks. Right: TOA localization
with a synchronized clock.

simplifies to calculating the intersection of spheres – a solu-
tion which is more robust to noise [12], [13]. The reduced
sensitivity to noise afforded by clock synchronization is
shown in the next section and, in particular, in Fig. 3.

B. Sensitivity of TOA and TDOA methods

In order to analyze the variance of the position estimate
due to measurement noise for a two-dimensional setup, we
linearize (2) around the state x = [Θ,x,y]T for a set of
TOA measurements from N anchors. Assuming that the
localization algorithm provides an unbiased estimate, the
following first-order approximation between the deviations
in its state estimate x̂ and the measurement and transmission
noise n = [n0,n1, . . . ,nN−1]

T can be made:

M (x̂−x) = n, (4)

where

M =
∂ [h0,h1, . . . ,hN−1]

T

∂x
. (5)

If least squares is used to solve for the deviation of the state
estimate, which is optimal in the case of Gaussian noise [14],
the variance on the state estimate x̂ can be shown to be:

Var(x̂) = σ
2
f
(
MT M

)−1
(6)

= σ
2
f

N−1

∑
i=0


1 cos(αi)

c
sin(αi)

c
cos(αi)

c
cos2(αi)

c2
sin(2αi)

2c2

sin(αi)
c

sin(2αi)

2c2
sin2(αi)

c2



−1

(7)

where σ2
f is the variance of the uncorrelated measurement

noise, and αi is the angle from anchor i to the robot, such that
cos(αi) = (xi− x)/‖p−pi‖ and sin(αi) = (yi− y)/‖p−pi‖.

The covariance matrix (7) of the state estimate equals the
Cramér-Rao Lower Bound (CRLB) for TOA measurements
with an unknown clock offset and Gaussian measurement
noise as calculated in [15]. The equivalence of the CRLB on
the position for TDOA and TOA localization methods, under
the assumption of an unknown clock offset, was shown in
[16]. Further results from [15] suggest that both methods of
localization have a similar computational complexity.
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We take the approach of [15] and divide the inverted
covariance matrix (7) into four sub-blocks, such that

Var(x̂) =
[

Var(Θ̂) Cov(Θ̂, p̂)
Cov(p̂,Θ̂) Var(p̂)

]
=

[
JΘ JT

Θ,p
JΘ,p Jp

]−1

, (8)

where JΘ contains information of the clock-offset, Jp the
position information and where JΘ,p are the cross-correlation
terms.

If the variance on the position is calculated by a block-
wise matrix inversion:

Var(p̂) =
(
Jp− JΘ,pJ−1

Θ
JT

Θ,p
)−1

, (9)

it is clearly visible how the uncertainty of the clock offset
influences the variance of the position. Hence, under equal
measurement noise, systems with synchronized clocks or
systems which omit clock synchronization by using two-
way communication are more accurate than one-way com-
munication localization systems, since with perfect offset
information (JΘ→∞) the position estimate variance is given
as Var(p̂) = J−1

p . Therefore, only in the case where JΘ,p = 0
does the uncertainty of the clock offset not increase the
variance of the position estimate. This is the case if the sen-
sor configuration is first moment balanced (∑N−1

i=0 cos(αi) =

∑
N−1
i=0 sin(αi) = 0), i.e. if the anchors are distributed about

the robot in an average sense; this is one criteria for optimal
sensor placement as discussed in [17]. The variance for
a setup with three anchors is shown in Fig. 3, where
it is visible that a similar performance between one-way
and two-way communication scheme can be achieved only
inside the convex hull spanned by the anchors. However,
this performance is equal for TDOA and for TOA with an
unknown clock offset.

C. Dynamic Setup

If the robot is not stationary, but rather moving through
the space, TOA systems with recursive clock and position
offset estimation have a potential advantage in comparison
to TDOA systems with only recursive position estimation.
In the extreme case of a perfectly known clock model, the
robot would only have to synchronize its clock once to
the anchors’ clocks, best at the position where JΘ,p = 0

Fig. 3. The variance for an estimator using TDOA or TOA measurements
with unknown clock offset (left) and for an estimator using TOA measure-
ments with known clock offset (right). Both plots show

√
tr(Var(p̂))) for

measurement noise with standard deviation σ f .

and over a large number of measurements sets M such that
JΘ = MN/σ2

f becomes large. It could then rely on its clock
model when moving through areas showing a poorer CRLB
for the static scene and a similar performance to a two-way
communication system could be achieved with a one-way
communication system. Such a scenario is shown in Fig. 3
where the robot orbits one anchor. Starting with the azimuth
angle φ = 0 (placing the robot within the convex hull of the
anchors, and hence in a region with low CRLB), it is able to
initialize its estimator with accurate position and clock offset
values. However, the worse the clock and its model, the less
of an advantage it is to track the offset.

III. ALGORITHM

Having compared TOA and TDOA algorithms in terms of
their theoretical performance bounds (Fig. 3) and measure-
ment equations in (1) and (3), we now present an algorithm
that enables these measurements. We begin the development
by discussing the clock model and requirement for synchro-
nized anchor clocks, before presenting the algorithm in its
entirety.

A. Clock Model

Using the terminology of [18], the local time of UWB
module i (e.g. an anchor or robot) is denoted as Ci(t), where
Ci(t) = t in the case of a perfect clock. However, since
an imperfect crystal oscillator drives the clock, the clock
skew dCi(t)/dt−1= ρi(t) is not constant, particularly during
warm-up [19]. We therefore define

Ci(t) = t +Θi(t), (10)

where Θi(t) = Ci(t)− t is the offset of the module’s local
clock to real time. It is calculated to be

Θi(t) = Θi(t0)+
∫ t

t0
ρi(τ)dτ, (11)

where Θi(t0) is the offset at time t0 and where the skew ρi(t)
is assumed to be a random walk process driven by zero-mean
noise wρ ′ [20]:

ρ
′
i (t) = wρ ′(t). (12)

B. Clock Synchronization Protocol

The anchors’ clocks must be synchronized in order to al-
low transmission timestamps to be compared. To synchronize
the anchor clocks, the time interval between a signal being
transmitted from anchor 0, and being received at anchor i
must be known. This timespan ζ0,i is

ζ0,i = ∆
0 + f0,i +∆

i (13)

with f0,i the time of flight and ∆0 and ∆i the transmission
and reception delay, respectively. It is measured using the
two-way communication protocol presented in [6].

After each anchor i has measured ζ0,i, the anchors tran-
sition to using a one-way communication protocol. This
protocol is shown in Fig. 4 and begins with anchor 0 sending
two subsequent signals, delayed by δpulse pair, containing
their respective transmission times. Using the time-difference
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Fig. 4. The one-way communication protocol described in Subsection III-B
with the transmission and reception timestamps T T x, T Rx of the signals

between the arrival of these two messages, anchor i is able
to calculate its relative skew to anchor 0 as

ρ0,i =
0T T x

0 − 0T T x
−1

iT Rx
0 − iT Rx

−1
−1, (14)

with iT T x
k the transmission time of signal k as expressed in

the time of anchor i. Knowing ζ0,i and ρ0,i anchor i can
synchronize its clock to anchor 0.

After receiving the second signal from anchor 0, anchor i
waits a predefined time δi after which its sends a signal
containing the transmission timestamps expressed in the time
of anchor 0. Once all anchors have sent such a signal, the
one-way protocol is repeated.

This light-weight clock synchronization protocol enables
TOA and TDOA measurements at a high frequency, however,
does not scale to large anchor networks, since multihopping
is not possible and as it relies on a reference anchor to syn-
chronize the network. Synchronization protocols for larger
networks are discussed, for example, in [13], [18].

C. Measurements

The one-way communication algorithm presented above
enables the robot to localize itself using either TOA or TDOA
measurements, assuming anchor positions are known.

The algorithm enables TOA measurements (1) to be cal-
culated as

fi = rT
Rx

i − 0T T x
i , (15)

and TDOA measurements (3) to be calculated as

di, j = (ρ0,r +1)(rT
Rx

i − rT
Rx
j )− (0T T x

i − 0T T x
j ). (16)

Note that inherent in the reception timestamps rT Rx
i and rT Rx

j
are measurement and transmission noise terms ni and n j.

IV. EVALUATION

To evaluate the performance of the anchor algorithm
presented in Section III for localization in two dimensions,
measurements generated using the system were compared
with ground-truth measurements from a motion-capture sys-
tem and post-processed.

A. Setup

The anchor algorithm was implemented in C++ on
STM32F4DiscoveryBoards, which served as host microcon-
trollers to the Decawave DWM1000 UWB modules. The
motion capture system in the Flying Machine Arena [21]
provided the ground truth for these measurements, providing
position measurements with sub-centimeter accuracy at a
frequency of 200 Hz.

Anchor 0 was programmed to send two subsequent signals
delayed by δpulse pair = 1ms every 10ms. All the other
anchors delayed their signal by δi = i ms, hence a complete
set of TOA or TDOA measurements was obtained every
10ms. Note that a minimum of two TDOA measurements
or three TOA measurements with unknown clock offset are
required for localization in two dimensions.

B. Measurement Quality

Measurements were gathered while orbiting anchor 1 as
shown in Fig. 3 and Fig. 5. The upper plot of Fig. 6 shows
TDOA measurement errors. It can be seen that although
the error variance remains constant across azimuth angle
φ , the mean of the TDOA error is angle dependent. Given
line-of-sight conditions present during the experiment, this
dependence on measurement angle is most likely caused
by the radiation pattern of the UWB antennas, which is
not isotropic [22]. The resulting varying signal delays cause
biased measurements [19]. Additionally, the combined error

Fig. 5. This figure shows the position estimates generated by an EKF
using TOA measurements (blue) and by an EKF using TDOA measurements
(green). In both cases, a random-walk model was assumed.
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Fig. 6. Upper plot: TDOA measurement error between anchor 0 and anchor 1 (e(cd1,0)) for the setup shown in Fig. 3 and Fig. 5 for different values of
φ . Lower plot: Combined error of clock estimate of the TOA EKF described in section IV-C and the TOA measurements of anchor 0 (e(cΘ+ c f0))

of the TOA measurements and the estimated clock offset of
the filter discussed in the following subsection is shown in
the lower plot of Fig. 6.

C. Random Walk TOA and TDOA Extended Kalman Filters

In order to verify whether these measurements are accu-
rate enough for localization, measurement data was post-
processed for both TOA and TDOA measurements, using
an extended Kalman filter (EKF) and the assumption of a
random-walk model for both position and clock skew. To
be insensitive to modeling errors, the process noise on the
position was assumed to be zero-mean noise wx,y with a large
standard deviation of SD(

wx,y
∆t ) = 20m s−1 and the sampling

time ∆t = 10ms. The standard deviation of the zero-mean
driving noise on the skew wρ was set to be SD(

wρ

∆t ) =
0.1ppm/s. In normal operation this value is lower, however
during warm-up the crystal oscillators show substantial drift
[19].

In the case of TDOA measurements, clock offset was
not tracked (since it does not appear in the measurement
equation). Therefore, the system equations for the TDOA
EKF are:

x(t +∆t) = x(t)+wx(t) (17)
y(t +∆t) = y(t)+wy(t) (18)

ρ(t +∆t) = ρ(t)+wρ(t). (19)

In the case of TOA measurements, the EKF additionally
includes clock offset Θ as a state, enabling clock syn-
chronization. The system equations (17)-(19) are therefore
extended by:

Θ(t +∆t) = Θ(t)+ρ(t)∆t. (20)

The measurement equations for the TOA update are given
by (1) and the one for the TDOA update by (3). Skew was
measured directly using (14).

The noise n acting on the reception timestamps was
assumed to have a standard deviation of σ f = 0.8ns. This
value is an order of magnitude larger than expected (σ f =
0.06ns [6]); however, this noise assumption was necessary

due to the unmodeled measurement bias and imperfect clock
synchronization. Both EKF were updated with a complete
set of measurements to deal with the correlated noise of the
TDOA measurements.

Fig. 5 shows the position estimates of the two filters.
As expected, given the CRLB analysis in Section II, both
filters perform well inside the convex hull of the anchors;
however, as the robot leaves the convex hull, the position
estimates deteriorates significantly, since the sensitivity to
measurement errors is large. Since the TOA EKF additionally
tracks the clock offset, it performs slightly better outside the
convex hull. However, the performance is heavily dependent
on the variance assumptions: if the process noise on the skew
is insufficient to capture not only the measurement noise, but
also the angle-dependent measurement bias (non-zero-mean
measurement noise), both clock offset and position estimates
can drift off for the TOA EKF as is visible in the lower plot
of Fig. 6 and in Fig. 5 at φ ≈ 3.9rad. In such cases, it is
advantageous not to track the clock.

V. QUADROCOPTER INTEGRATION

In the previous section, post-processing of TOA and
TDOA measurements showed good results inside the convex
hull. To demonstrate that the localization system is also
applicable to real-time, dynamic systems, it was integrated
with a quadrocopter. TDOA measurements were provided
to the quadrocopter’s onboard state estimator. The TDOA
approach was chosen since the quadrocopter flew only within
the convex hull of the anchors (which differ in location
from pervious experiments, as described in Subsection V-C).
Clock skew was estimated independently.

A. Setup

The quadrocopter’s onboard estimator is described in [6]
and uses the accelerometer to update the airspeed estimate. It
was adapted to use TDOA measurements by linearizing the
TDOA measurement equation (3) around the quadrocopter’s
current state estimate. In addition to TDOA measurements,
and the measurements required by the estimator [6], a
barometer was used to reduce estimation variance in the
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vertical direction. For the relation between the pressure p
and the robot’s altitude z, the isothermic barometric formula
was used [23]:

p(z) = p(zref)exp
(
−MG

RT
(z− zref)

)
, (21)

with M = 28.97g mol−1 the molar mass of air,
G = 9.81m s−1 the gravitational acceleration,
R = 8.314J mol−1 K the universal gas constant for air,
T = 295K the absolute temperature of the air which
is assumed constant, and zre f the altitude at which the
estimator was initialized.

This estimator was implemented in C++ and was run at
1000 Hz on a Pixhawk PX4 flight management unit [24]. In
addition to the estimator and localization system, an onboard
state controller was used to track a position setpoint, which
was sent via a radio command from a ground station. This
flight management unit and a DWM1000 module connected
to it over SPI were mounted on a Hummingbird quadrocopter
[25].

B. Estimator Settings

The parameters of the extended Kalman filter were left
unchanged from the values described in [6], with the excep-
tion of the acceleration process noise, which was set to have
a standard deviation of 5 m s−2 because of the higher UWB
update rate. In addition, the barometer measurement noise
was set to have a standard deviation of 0.15 mbar which
equals an altitude difference of about 1.3 m for ambient
conditions.

To facilitate a smooth quadrocopter flight in the presence
of biased TDOA measurements, their standard deviation was
set to 3 m. This value was tuned by hand.

C. Experiment

The quadrocopter was commanded to fly a horizontal
square ten times by moving the position setpoint with a
speed of 1 m s−1. The square had a length of 3.4 m and
its center coincided with the center of the cuboid spanned
by eight anchors with side-length ∆x≈ 9m, ∆y≈ 5.5m and
∆z≈ 5m (see Table I for coordinates). This square is shown
in Fig. 7 whereas the (x,y,z) position and the RMS error of
the estimator are shown in Fig. 8.

D. Discussion and Interpretation

Fig. 7 shows the trajectory tracking for x and y position.
Due to the proportional position control, the quadrocoptor
lagged the setpoint and did not accurately track the square’s
vertices. Fig. 8 shows that the RMS error of the x and y

TABLE I
ANCHOR COORDINATES FOR THE QUADROCOPTER MANEUVER

Nr. 0 1 2 3 4 5 6 7

x [m] -4.3 4.0 -4.7 4.0 3.8 3.8 -5.8 -5.8
y [m] -4.7 1.7 1.2 -4.2 -4.7 1.3 -2.2 1.5
z [m] 0.3 5 0.3 5 0.3 0.3 6.1 6.1

Fig. 7. The position setpoint for the quadrocopter was moved with 1 m s−1

along the reference trajectory (black). The actual (red) and the estimated
(blue) position of the quadrocopter are shown during this maneuverer. See
Table I for the anchor coordinates.

position is significantly smaller than the RMS error of the
overall position (when z is included). The former has a mean
of 0.14 m, whereas the latter has a mean of 0.28 m. One
explanation for the poor vertical tracking could be the anchor
setup, which showed the least variance in the z positions
of the anchors and only approximated the optimal anchor
placement criteria outlined in [17]. Another possible cause
could be the airspeed estimation in the thrust direction being
more sensitive to errors.

VI. CONCLUSION

This paper presented a localization system that enables
robot localization within some space. By receiving one-way
communication from a set of fixed-position anchors, a robot
is able to self-localize using either TOA or TDOA measure-
ments. Since robots are not active in the communication
process and are able to self-localize, the system supports
multiple robots operating simultaneously and anonymously
within the space.

In its current embodiment, the localization system is exper-
imentally shown to perform well enough for a quadrocopter
to repeatably track a reference trajectory over an extended
period of time with a RMS error of 0.28 m. However, ex-
perimental results show that systematic measurement biases
exist and vary throughout the space. Since these biases are
location-dependent, unknown and thus not compensated for
in the state estimation, they cause noticeable degradation
in localization performance, biasing TOA measurements by
up to 0.3 m. A non-isotropic antenna radiation pattern is
hypothesized to be the cause of these biases.

In addition to systematic errors, the TDOA measurement
standard deviation was 0.075 m – larger than the expected
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Fig. 8. The actual (red) and estimated (blue) (x,y,z) position during
the quadrocopter maneuver. Lowest plot: In blue, the RMS error between
estimated (x̂, ŷ, ẑ) position and actual (x,y,z) position. In green the RMS
error between the estimated (x̂, ŷ) position and the actual (x,y) position.
This plot shows that the localization system accurately estimates position in
the xy-plane (with a mean horizontal position RMS error: 0.14 m), but less
well when the vertical direction is also considered (with a mean position
RMS error: 0.28 m).

c
√

2σ f = 0.025m. This is most likely due to imperfect
anchor clock synchronization. It is suggested that alternative
algorithms for clock synchronization be investigated in order
to reduce this variance.

With the low computational cost of onboard self-
localization, the good scalability and the high update fre-
quency, this system appears to be suited to investigate swarm
robotics or to serve as a cheap and flexible alternative to
motion capture systems if sub-decimeter position accuracy
is not required.
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