
An On-Board Learning Scheme for Open-Loop Quadrocopter
Maneuvers Using Inertial Sensors and Control Inputs from an External

Pilot

Robin Ritz and Raffaello D’Andrea

Abstract— We present an iterative learning scheme for im-
proving the performance of highly dynamic open-loop maneu-
vers with quadrocopters. A probabilistic estimate of the state
deviation at the end of the maneuver is obtained by fusing
two data sources that are available on-board: 1) an inertial
measurement unit, and 2) control inputs from an external pilot
that performs a recovery after the open-loop maneuver has been
executed. A computationally lightweight policy gradient method
is applied in order to adapt a set of characteristic maneuver
parameters, which in turn reduces the expected value of the
final state deviation for the next execution of the maneuver.
The performance of the learning algorithm is demonstrated
in the ETH Zurich Flying Machine Arena by improving the
performance of a triple flip.

I. INTRODUCTION

In recent years, the growing popularity of the quadrocopter
as a research platform has led to several demonstrations of
its ability to perform highly dynamic maneuvers (examples
include [1], [2], and [3]). For most of these maneuvers, a
first-principles model is leveraged to plan the trajectories,
and subsequently a feedback control law is applied for
tracking them. While for most tasks it is sufficient to apply a
feedback controller in order to compensate for the unmodeled
effects, for highly dynamic maneuvers these effects may
become significant, which results in large tracking errors.
This problem is not limited to quadrocopters, but arises
in many dynamical systems when performing aggressive
tasks. A common approach to improve tracking performance
in such situations is to execute the maneuver of interest
multiple times and then apply an iterative learning method
that non-causally corrects for systematic errors. In other
words, data from previous executions is used to adapt the
nominal maneuver parameters, such that in the ideal case
all repeatable disturbances are eliminated after a sufficient
number of iterations.

One well-known approach for adapting a maneuver itera-
tively is called iterative learning control [4], [5], [6]: A cor-
rection term is introduced to each time step of a discrete-time
representation of the desired trajectory, where the correction
terms typically act on the reference inputs or on the nominal
state trajectory. After each execution of the maneuver, an
optimization over the correction terms is performed in order
to minimize some measure of the expected tracking error.

This research was supported by the Hans-Eggenberger Stiftung and the
SNSF (Swiss National Science Foundation). The authors are with the
Institute for Dynamic Systems and Control, ETH Zürich.
{rritz, rdandrea}@ethz.ch

Various learning strategies based on this approach have been
introduced, for example enabling more precise motions of
robot arms [7], or improving tracking performance with
quadrocopters [8].

A second approach for correcting systematic disturbances
is to adapt only a small set of characteristic parameters [9],
[10]. This strategy is typically suitable if the objective is
to minimize the deviation from the nominal maneuver only
at certain key frames, rather than at every time step of the
trajectory. Due to the lower dimensionality of the problem
this approach usually requires less computational resources,
which is favorable for on-board implementation. Therefore,
the learning scheme presented herein applies this approach.

A crucial requirement for most learning strategies is the
ability to measure the deviation from the nominal trajectories.
Typically, learning methods for high-performance quadro-
copter maneuvers leverage an external motion-capture sys-
tem to precisely measure the vehicle’s position and attitude
at a high rate, which significantly simplifies the estimation
of the state deviation [8], [9], [10], [11]. However, a motion-
capture system is not always available or practical, and many
applications require other approaches for estimating the ve-
hicle’s state deviation. In this paper, we extend the parameter
adaptation method introduced in [9] to a scenario where
no position and attitude measurements are available to the
learning algorithm. The learning strategy is computationally
lightweight and implemented on-board. We assume that an
external pilot is controlling the vehicle both before and after
the open-loop maneuver. The data sources available to the
learning algorithm are: 1) an inertial measurement unit, and
2) the control commands that are received from the external
pilot before and after the execution of the maneuver.

The remainder of this paper is structured as follows: In
Section II, we present a first-principles model of the quadro-
copter. Section III introduces an estimator that provides
a probabilistic measure of the state offset after the open-
loop maneuver, and Section IV presents an iterative learning
algorithm for improving performance. In Section V we show
experimental results, and we conclude in Section VI.

II. MODEL

This section presents a first-principles model of the
quadrocopter, where we use the model described in [9].
The vehicle is modeled as a rigid body with mass m
and rotational inertia I around the center of gravity. The
position p = (px, py, pz) of the vehicle, which also refers to

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3684-7/14/$31.00 ©2014 IEEE 5245

its center of gravity, is measured in an inertial frame O.
(For the ease of notation, throughout this paper vectors
may be expressed as n-tuples x = (x1, x2, . . . , xn), with
dimension and stacking clear from context.) We choose the
inertial frame O such that gravity is aligned with the negative
z-direction. The attitude of the vehicle is described by a
rotation matrix R that represents a rotation from the body
frame B (which is fixed on the vehicle) to the inertial
frame O.

A. Vehicle Dynamics

The vehicle provides four motors with fixed-pitch pro-
pellers as actuators, each of them producing a thrust
force fp, p ∈ {1, 2, 3, 4}. Let a = (ax, ay, az) be the proper
acceleration1 in the body frame B. All propeller forces fp act
along the body z-axis, and hence the proper acceleration a
is given by

a =

 0
0

(f1 + f2 + f3 + f4)/m

+ ãmodel, (1)

where ãmodel denotes the process noise acting on the accel-
eration. The translational dynamics are given by the second
order differential equation

p̈ = Ra + g, (2)

where g = (0, 0,−g) denotes the gravitational acceleration.
The rotation matrix R evolves with

Ṙ = R

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , (3)

where ω = (ωx, ωy, ωz) denotes the rotational rates around
the vehicle’s body axes. The dynamics of the body rates ω
are governed by

ω̇ = I−1

 d(f2 − f4)
d(f3 − f1)

κ(f1 − f2 + f3 − f4)

− ω × Iω

+ ˜̇ωmodel,

(4)
where d denotes the arm length of the quadrocopter, κ the
torque-to-thrust ratio of the propellers, and ˜̇ωmodel the pro-
cess noise acting on the rotational acceleration.

B. Sensor Model

An inertial measurement unit is mounted on the vehicle,
measuring the proper acceleration a and the body rate ω.
The acceleration measurement is modeled as

ameas = a + ãmeas, (5)

where ameas is the sensor output value, and ãmeas denotes
the sensor noise. Similar to the acceleration, the angular rate
measurement is modeled as

ωmeas = ω + ω̃meas, (6)

with ωmeas being the sensor output, and ω̃meas denoting the
sensor noise.

1In this context, proper acceleration refers to the acceleration relative to
free fall.

C. On-board Controller

The vehicle receives desired total thrust fdestot and de-
sired body rates ωdes from an external pilot or from
the open-loop maneuver definition. The on-board con-
troller is designed such that the measured body rate de-
viations ∆ω = ωdes − ωmeas follow three decoupled first-
order systems. This is achieved by inverting the angular
dynamics (4), while the process noise ˜̇ωmodel is neglected: d(f2−f4)

d(f3−f1)
κ(f1−f2+f3−f4)

 = I

∆ωx/τxy
∆ωy/τxy
∆ωz/τz

+ωmeas×Iωmeas,

(7)
where τxy is the desired time constant for the x- and y-
axis, and τz the time constant around the z-axis. The above
equation, together with the condition

fdestot = f1 + f2 + f3 + f4, (8)

defines the four thrust forces fp.

D. Two-dimensional Vehicle Dynamics

In this paper, we apply the proposed learning scheme
to a two-dimensional open-loop maneuver (namely a triple
flip that we will introduce in Section V). To reduce the
computational complexity, we thus restrict the learning to
two dimensions and assume that the systematic out-of-plane
disturbances are small. While in principle the approach
presented herein is also suitable for three-dimensional learn-
ing, it is beyond the scope of this paper to verify this
experimentally.

In the following, we reduce our model to the xz-plane. In
doing so, the vehicle’s position is described by px and pz ,
and the attitude can be described by a single parameter θ,
which is the pitch angle. Fig. 1 shows an illustration of the
two-dimensional model.

For the two-dimensional case, the translational dynam-
ics (2) reduce to

p̈x = ax cos θ + az sin θ, (9)
p̈z = −ax sin θ + az cos θ − g. (10)

The evolution of the attitude is simply

θ̇ = ωy, (11)

f3

f1θ

p
eOz

eOx

f2, f4
f1

f3 f2

f4

Fig. 1. Illustration of the two-dimensional quadrocopter model considered
in this paper. The red arrows denote the propeller forces fp, and the blue
arrows show state vector components (position p = (px, pz) and pitch
angle θ). For clarification, a three-dimensional view is shown on the top
right.

5246

and the angular acceleration (4) for the two-dimensional
model is given by

ω̇y = d(f3 − f1)/Iyy + ˜̇ωy,model, (12)

where we assume a diagonal rotational inertia matrix I with
entry Iyy for the y-axis.

We define the state vector of the two-dimensional system
to be

s := (px, pz, vx, vz, θ), (13)

where vx := ṗx and vz := ṗz denote the translational veloc-
ities. Note that the pitch rate ωy is not included in the state
vector, even though it is a dynamic state. This is because: 1)
the pitch rate ωy is estimated separately (as we will see in
Section III), and 2) we do not intend to correct for pitch rate
offsets after the open-loop maneuver, since we assume that
the on-board controller (7) quickly controls these deviations
to zero.

The current proper acceleration ax and az , and the current
pitch rate ωy can be considered as inputs to the system
describing the evolution of the state vector (13). Hence, we
define an input vector

u := (ax, az, ωy), (14)

that contains these variables. Stacking (9), (10), and (11) into
a vector, the continuous-time dynamics f c(s,u) of the state
vector (13) yield

ṡ = f c(s,u) =


vx
vz

ax cos θ + az sin θ
−ax sin θ + az cos θ − g

ωy

 . (15)

E. Discrete-time System Dynamics

Since the estimator will be designed for discrete time
steps, the system dynamics (15) must be discretized. We use
a superscript k to indicate the time step of a variable. The
discrete-time system dynamics fd(sk,uk) are approximated
by

sk+1 = fd(sk,uk) ≈ sk + f c(s
k,uk)T, (16)

where T denotes the sampling time.

F. Jacobian Matrices for Covariance Matrix Prediction

The estimator which will be introduced in Section III
leverages Jacobian matrices around the current estimated
state for approximating the evolution of the covariance
matrix. (This is similar to the prediction step of an extended
Kalman filter.) Omitting the superscript k for reasons of
readability, the Jacobian matrices Ad and Bd of the discrete-
time system dynamics (16) around an arbitrary operating

point (s = s∗, u = u∗) yield

Ad(s∗,u∗) =
∂fd(s,u)

∂s

∣∣∣∣
s=s∗,u=u∗

=


1 0 T 0 0
0 1 0 T 0
0 0 1 0 −Ta∗x sin θ∗ + Ta∗z cos θ∗

0 0 0 1 −Ta∗x cos θ∗ − Ta∗z sin θ∗

0 0 0 0 1

 , (17)

Bd(s∗,u∗) =
∂fd(s,u)

∂u

∣∣∣∣
s=s∗,u=u∗

=


0 0 0
0 0 0

T cos θ∗ T sin θ∗ 0
−T sin θ∗ T cos θ∗ 0

0 0 T

 . (18)

This completes the derivation of the quadrocopter model
used in this paper.

III. ESTIMATOR

In this section, we introduce an estimator that provides
a probabilistic measure of the state evolution, relative to an
initial state estimate.

A. Overview

An overview of the estimator is shown in Fig. 2. The
estimator draws information from two different sources
(shown as green boxes in Fig. 2). The first source is a
first-principles model of the vehicle, which computes an
estimate of the current translational and angular acceleration
based on the four propeller forces that are currently applied.
The second source of information is an inertial sensor,
which measures acceleration and angular rate directly. Data
fusion algorithms are used to merge this information, and
subsequently position, velocity, and pitch angle estimates are
obtained by numerical integration of the system dynamics.

In the following, all probabilistic variables are approxi-
mated by Gaussian distributions, and are thus defined by an
expected value (denoted with a hat symbol ·̂) and a covari-
ance matrix (denoted as Σ[·]). All noise terms are assumed
to be Gaussian white noise signals [12]. The estimator is
similar for a two-dimensional and for a three-dimensional
model, except that the state and input vectors have different
sizes. We use the more general three-dimensional notation
when we state the estimator’s equations in the following.

B. Acceleration Estimation

For each time step k we estimate the current proper
acceleration ak

est by fusing the model-based proper accel-
eration ak

model (which is the the model-based acceleration a
given by (1) evaluated at time step k) with the sensor
measurement ak

meas, given by (5). Applying the assumption
that there is no correlation between the noise terms of the
two estimates, the covariance matrix Σ[ak

est] of the fused
acceleration can be written as

Σ[ak
est] = (Σ[ãk

model]
−1 + Σ[ãk

meas]
−1)−1, (19)

5247

acceleration estimation

first-principles
vehicle model

inertial
sensors

angular rate estimation

amodel ameas

aest

u

ω̇model ωmeas

ωest

external pilot

s
state

integration∫on-board
controller

open-loop
maneuver

fp

fdestot ωdes

fdestot ωdes

Fig. 2. Flowchart of the state estimator presented herein. The green blocks
are the two data sources: the first-principle vehicle model and the inertial
sensors. Note that, except for the external commands (fdestot and ωdes)
and the propeller forces fp, all signals have a probabilistic representation,
and thus are approximated by a mean value and a covariance matrix. The
on-board controller (blue block) takes commands either from an external
pilot or from the open-loop maneuver description in order to compute the
deterministic propeller forces fp.

where ãk
model and ãk

meas denote the noise terms defined
in (1) and (5), respectively. (We assume that the noise prop-
erties Σ[ãk

model] and Σ[ãk
meas] are known.) The expected

value âk
est yields

âk
est = Σ[ak

est](Σ[ãk
model]

−1âk
model + Σ[ãk

meas]
−1âk

meas),
(20)

where âk
model is the expected value of (1) and âk

meas is the
acceleration sensor reading at time step k. Note that if the
noise terms ãk

model and ãk
meas are modeled to be uncorre-

lated between x-, y-, and z-components, then (19) and (20)
both decouple into scalar equations, one for each axis.

C. Angular Rate Estimation

In order to find an estimate of the current body rate ωk
est,

we fuse the model-based prediction of the angular acceler-
ation (4), denoted here as ω̇k

model, with the current sensor
reading of the rate gyro (5), denoted as ωk

meas. In contrast
to the acceleration, the body rate is a dynamic state and
its model-based prediction at time step k therefore depends
on the previous estimated value ωk−1

est . The model-based
prediction of the body rate ωk

model can be approximated by

ω̂k
model = ω̂k−1

est + ˆ̇ωk−1
modelT, (21)

Σ[ωk
model] = Σ[ωk−1

est] + Σ[˜̇ωk−1
model]T

2, (22)

where ˆ̇ωk−1
model is the expected value of (4) evaluated at the

previous time step, and ˜̇ωk−1
model the corresponding process

noise term with known covariance matrix Σ[˜̇ωk−1
model]. Again

assuming no correlation between the noise terms of the
model-based and sensor-based estimates, the fused angular
rate estimate ωk

est yields

ω̂k
est = Σ[ωk

est](Σ[ωk
model]

−1ω̂k
model + Σ[ω̃k

meas]
−1ω̂k

meas),
(23)

Σ[ωk
est] = (Σ[ωk

model]
−1 + Σ[ω̃k

meas]
−1)−1, (24)

where ω̂k
meas is the rate gyro reading at time step k,

and ω̃k
meas the corresponding sensor noise with given co-

variance matrix Σ[ω̃k
meas].

D. State Prediction

Based on the acceleration estimate ak
est and the body rate

estimate ωk
est from above, we perform a prediction in order

to obtain position, velocity, and pitch angle estimates, i.e. an
estimate of the state vector sk defined by (13). The prediction
of the state’s expected value ŝk+1 is performed with

ŝk+1 = fd(ŝk, ûk), (25)

where the discretized state dynamics fd(ŝk, ûk) are given
by (16). The evolution of the covariance matrix of the
estimated state can be approximated by

Σ[sk+1] = Ak
dΣ[sk](Ak

d)T + Bk
dΣ[uk](Bk

d)T , (26)

where for reasons of readability the shorthand nota-
tion Ak

d = Ad(ŝk, ûk) and Bk
d = Bd(ŝk, ûk) is used [13].

This completes the description of the state estimator. At
every time step k, the expected value of the estimated state
is updated with (25), and its covariance matrix is updated
with (26). Note that since we have no feedback on the state
vector sk, the expected value ŝk drifts away from the true
value and the covariance Σ[sk] grows over time.

IV. LEARNING ALGORITHM

In this section, we describe an iterative learning algorithm
for improving the performance of a highly dynamic open-
loop maneuver. The presented method is based on the policy
gradient learning scheme introduced in [9]. A first-principles
model of the vehicle is used for computing an initial guess of
the maneuver parameters, and the same model is leveraged
to derive an error correction matrix used for iteratively
improving these maneuver parameters.

The initial parameter guess and the error correction matrix
are computed in advance using a desktop workstation, while
the parameter improvement scheme is running on-board.

A. Initial Parameter Guess

We assume that the open-loop maneuver to be executed
has a defined structure, hence we can select a set of N
numerical parameters

p = (p1, . . . , pN), (27)

that define the desired maneuver trajectories

fdestot (t), ωdes(t), for t ∈ [t0, tf], (28)

with t0 and tf denoting the start and end time of the open-
loop maneuver, respectively. We model the estimate of the
maneuver parameters p to be a Gaussian distribution with
expected value p̂ and covariance matrix Σ[p]. For a given
initial state ŝ0, the nominal final state ŝnomf (p̂) is obtained
by integrating the nominal system dynamics:

ŝnomf (p̂) = ŝ0 +

∫ tf

t0

ṡnom(t, p̂)dt. (29)

The nominal dynamics ṡnom(t, p̂) are given by (15), where
process noise terms are neglected.2 In order to find an initial

2The argument (p̂) is stated explicitly in order to highlight that the
nominal final state is a function of the maneuver parameters.

5248

guess p̂0, we seek the parameters that minimize a weighted
two-norm of the final state deviation:

p̂0 = argmin
p̂

||ŝnomf (p̂)− ŝdesf ||, (30)

where ŝdesf denotes the desired final state after the maneuver.
The solution to (30) is found by a numerical optimizer, where
the final state function (29) is evaluated using numerical
integration.3 The initial covariance matrix of the maneuver
parameters Σ[p0] is a design parameter. Its entries are
chosen to satisfy a trade-off between fast learning and outlier
rejection.

B. Parameter Improvement Scheme

For the parameter improvement scheme, we numerically
compute4 the Jacobian matrix J of the nominal final
state ŝnomf (p̂) with respect to the maneuver parameters p̂,
around the initial parameter guess p̂0:

J =
∂ŝnomf (p̂)

∂p̂

∣∣∣∣
p̂=p̂0

, (31)

where ŝnomf (p̂) is given by (29). A crucial requirement of the
presented parameter adaptation scheme is that the rank of the
Jacobian matrix J is equal to or higher than the number of
error states; otherwise it is in general not possible to correct
for all elements of the observed state deviation after the open-
loop maneuver (denoted as ∆sf). If the number of adaptation
parameters equals the number of states, the correction ma-
trix C is defined to be the inverse of the Jacobian matrix J :

C := J−1. (32)

On the other hand, if the number of adaptation parameters
exceeds the number of error states, the correction matrix C
may be defined, for example, as the least square solution:

C := JT (JJT)−1. (33)

For an observed final state offset ∆sif (the superscript i
denotes the iteration number), the parameter adaptation rule
is then defined as

p̂i+1 := p̂i − γiC∆ŝif , (34)

where γi ∈ (0, 1] is the learning step size of the current
iteration.5 We choose γi such that the trace of the new
parameter covariance matrix Σ[pi+1] is minimized; this is
known as the minimum mean square error estimate [15].
The optimal step size is given by

γi =
Trace[Σ[pi]]

Trace[Σ[pi]] + Trace[CΣ[∆sif]CT]
, (35)

and the covariance matrix of the new parameter set yields

Σ[pi+1] = (1− γi)2Σ[pi] + (γi)2CΣ[∆sif]CT . (36)

3The optimization is executed with Matlab [14], using the function fmin-
search for the minimization of (30), and ode45 for the integration of (29).

4Computations are executed with Matlab [14], using the function jaco-
bianest of the toolset Adaptive Robust Numerical Differentiation.

5For γi ∈ (0, 1] ∀i, it can be shown that to first order the expected error
converges to zero [9].

By inspection of (35) and (36) we find that the trace of the
parameter covariance matrix Σ[pi] always becomes smaller
with increasing iteration number i, such that the learning step
size γi, given by (35), converges to zero. If required, we can
add an additional term Σ[p̃i] to (36) that can be considered
as process noise of the maneuver parameters pi. Doing so,
the step size γi does not converge to zero, meaning that the
learning algorithm is still adaptive after a large number of
iterations.

After each parameter update, we also have to recompute
the trajectories of the desired total thrust force fdestot and of the
desired body rates ωdes, as these are the inputs fed to the on-
board controller when the open-loop maneuver is executed.

C. Final State Offset Estimate

We now address the problem of estimating the final state
offset ∆sf by observing one execution of the open-loop
maneuver. Note that for reasons of readability the super-
script i, denoting to current learning iteration, is omitted in
the following. Fig. 3 shows the different intervals of such a
learning iteration: The vehicle executes the high-performance
open-loop maneuver between time t0 and tf , and recovers
to hover between time tf and tr. During recovery, the
vehicle receives control commands from an external pilot
that can take advantage of absolute position measurements.
We therefore assume that the vehicle is guided back to the
position from where it started the open-loop maneuver.

1) Forward State Integration: We assume that the vehicle
is hovering before the maneuver is triggered; the expected
initial state ŝ0 is known, and the initial covariance ma-
trix Σ[s0] is a design parameter. (Roughly speaking, it is
a measure for how precise the external pilot is able to
hover.) By applying the estimator introduced in Section III
throughout the open-loop maneuver (from time t0 to tf), we
obtain a first estimate of the final state, denoted as s(t−f). The
open-loop maneuver is assumed to be highly dynamic, hence

pi

t
hover hover

recovery

open-loop external pilot control

t0

forward state integration backward state integration
t−f tr

high-performance
open-loop maneuver

t+f

s0s0

s(t+f)s(t−f)

s(tf)state
fusion pi+1

parameter
adaptation

Fig. 3. Illustration of one learning iteration. On the timeline (top), the
vehicle is shown performing the open-loop maneuver, followed by the
recovery back to hover. Two estimates of the final state s(tf) are computed
for each iteration: one by forward integration from time t0 to tf , and one
by backward integration from time tr to tf . Subsequently, the two estimates
are fused and used to perform a parameter adaptation, reducing the expected
value of the next final state deviation.

5249

unmodeled aerodynamic effects might become significant. To
account for this, the process noise terms ãmodel and ˜̇ωmodel

are increased as the maneuver is executed.
2) Backward State Integration: After recovery, at time tr,

the vehicle is assumed to be hovering again, i.e. ŝ(tr) = ŝ0
and Σ[s(tr)] = Σ[s0] are known. Applying the state esti-
mator backwards in time from tr to tf delivers a second
estimate of the final state, denoted as s(t+f). The recov-
ery performed by the external pilot is assumed to be less
aggressive than the open-loop maneuver; the process noise
is smaller. Consequently, the model-based estimates deliver
valuable information leading to a more accurate final state
observation.

3) State Estimate Fusion: Since the learning algorithm
introduced above requires a single estimate of the final
state s(tf), the two estimates from forward and backward
state integration are fused. Assuming that the two estimates
are not correlated, the covariance matrix Σ[s(tf)] of the
fused estimate is given by

Σ[s(tf)] = (Σ[s(t−f)]−1 + Σ[s(t+f)]−1)−1, (37)

and the expected value ŝ(tf) yields

ŝ(tf) = Σ[s(tf)](Σ[s(t−f)]−1ŝ(t−f) + Σ[s(t+f)]−1ŝ(t+f)).
(38)

Note that, for the two-dimensional case, the evaluation
of (37) and (38) requires five-dimensional matrix inversions,
which might be a burden for on-board implementation.
Hence, scalar fusion of the state vector elements using the
corresponding variances might be applied in cases where the
limits of the computational resources are reached. (However,
the matrix inversions must be computed only once for every
learning iteration.) Finally, the estimated offset ∆sf from
the desired state is obtained by

∆ŝf = ŝ(tf)− ŝdesf , (39)

Σ[∆sf] = Σ[s(tf)], (40)

which is then fed to the parameter adaptation scheme (34)
and (36).

This completes the derivation of the iterative learning
algorithm that is based on inertial sensor measurements and
inputs from an external pilot during recovery.

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results of the state
estimation and learning algorithm introduced above.

A. Experimental Platform

The experiments presented in the following are carried out
in the Flying Machine Arena at ETH Zurich [16]. Modified
Ascending Technologies ‘Hummingbird’ quadrocopters are
used, where the electronics have been replaced by a Pix-
hawk PX4 Flight Management Unit (FMU) [17] and some
other custom electronic components. The testbed provides
an infrared motion-tracking system, which can be used for
measuring ground truth and for simulating an external pilot.

B. Implementation

The estimator introduced in Section III and the learning
strategy presented in Section IV are implemented on the PX4
FMU. The step size T of the estimator is chosen to be 1 ms.
While the forward state integration runs in real-time, the
backward integration can only be executed once the recovery
is finished. Therefore, all sensor readings and commanded
motor forces are written into a buffer during recovery, and
then processed backwards in time as soon as the recovery is
finished. (A constant recovery duration of 3 s is chosen.) The
vehicle receives control commands from the ground station
(i.e. from the external pilot) at a rate of 50 Hz. The external
pilot is simulated by a position controller, which uses the
position and attitude measurement data from the motion-
capture system. The on-board controller, which tracks the
desired body rates using rate gyro feedback, runs at 1000 Hz,
i.e. at the same frequency as the estimator.

C. Parameterized Triple Flip Maneuver

The hover-to-hover triple flip is used as an example for
a high-performance open-loop maneuver. Assuming that the
maneuver starts at the origin, the desired final state is

ŝdesf = (0, 0, 0, 0, 6π). (41)

We choose a parameterization that is similar to the one pre-
sented in [9]: The maneuver is divided into seven intervals, as
illustrated in Fig. 4, and each interval has constant propeller
forces. The forces f2 and f4 are chosen to be the average
of f1 and f3:

f2 = f4 = (f1 + f3)/2. (42)

Consequently, each interval j is defined by the parameter
triple {f j1 , f

j
3 , T

j
int}, where T j

int denotes the duration of the
interval. We choose the following parameter vector p to be
adapted during the learning iterations:

p1 = f11 − f13 , with f11 + f13 = mg/2,
p2 = T 2

int,
p3 = T 4

int,
p4 = f61 + f63 , with f61 = f63 ,
p5 = f73 − f71 , with f71 + f73 = mg/2.

(43)

These parameters are chosen because they allow reasonable
adaptation authority for each element of the final state vector.
Note that since we use a two-dimensional model, out-of-
plane deviations are not eliminated. Due to the symmetry
of the vehicle and the maneuver, however, the repeatable
components of such disturbances are small.

D. Results

Fig. 5 shows the evolution of the estimated state offset
versus the iteration number. For reference, the state offset
measured with the motion-capture system is plotted as well,
which in this context can be considered to be the ground
truth. After about ten iterations the errors converge to an
approximate value of zero, while we continue to see some
non-repeatable disturbances in each iteration. Further, we can
see that the position estimates are not very accurate, which is

5250

t

t

ωy

fp

fmax

fmin

mg/4

0

0

ωmax

T 1
int T 2

int T 3
int T 4

int T 5
int T 6

int T 7
int

ωy(t)

f3(t)f1(t)

accelerate start rotate coast stop rotate decelerate

Fig. 4. Angular rate and propeller force trajectories of the parameterized
triple flip maneuver. The maneuver consists of seven intervals, each defined
by the forces fj1 and fj3 , and the interval duration T j

int. The first interval is
used to tilt a little bit, in order to end up at the right x-position at the end of
the maneuver. During the second interval, the vehicle accelerates with almost
full thrust in order to gain vertical momentum. The third interval is then
used to gain rotational speed, applying the maximum rotational acceleration,
and during the fourth interval the minimum thrust is applied, the vehicle
just coasts. The intervals five to seven are then the inverse of the intervals
one to three, i.e. stop rotating, decelerate, and adjust tilt angle.

expected to some extent because of the integrator drift. Even
if the estimate deviates from the true value quantitatively,
however, it delivers useful qualitative information for the
learning algorithm: The direction of the estimated deviation
is correct for most iterations, especially for low iteration
numbers. The state estimate thus delivers valuable informa-
tion about the direction towards which the maneuver parame-
ters must be adapted. Hence, while the estimator introduced
in Section III might not be accurate enough to be fed to
a feedback controller for example, in combination with the
learning algorithm presented herein it delivers useful results
when improving the performance of a triple flip maneuver.

VI. CONCLUSION

We have presented a learning scheme for high-
performance open-loop maneuvers with quadrocopters,
which can be implemented on-board and requires no external
motion-capture system. The method has been validated by
reducing the systematic errors of a triple flip maneuver.

For the experiments presented herein the external pilot
was simulated by a position controller using motion-capture
system data; the recovery was executed in a fast and repeat-
able fashion, which might not be the case for a human pilot.
Hence, this paper shows that the method works in principle,
but whether it is applicable with a human pilot is still an open
question and part of future work. Another future subject of
study is the experimental validation on a three-dimensional
maneuver; while herein the presented approach has been ap-
plied to a two-dimensional example, in principle the method
should be applicable to the three-dimensional case, too.

−2

−1

0

1

−4

−2

0

2

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

iteration number

∆θtrue

∆θ̂

∆vx,true
∆v̂x

∆v̂z ∆vz,true

∆pz,true∆p̂z

∆px,true
∆p̂x

[m]

[m/s]

[rad]

Fig. 5. Final state offset versus iteration number for position (top), velocity
(middle), and pitch angle (bottom). The solid lines show the estimated values
obtained by the estimator introduced in Section III. The dotted lines show
the true values measured by a motion-capture system. After ten learning
iterations, all errors have converged to a value near zero.

REFERENCES

[1] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” in Pro-
ceedings of the International Symposium on Experimental Robotics,
2010.

[2] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, 2011.

[3] R. Ritz, M. W. Müller, M. Hehn, and R. D’Andrea, “Cooperative
quadrocopter ball throwing and catching,” in Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, 2012.

[4] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robots by learning,” Journal of robotic systems, vol. 1, no. 2, 1984.

[5] G. Casalino and G. Bartolini, “A learning procedure for the control
of movements of robotic manipulators,” in IASTED symposium on
robotics and automation, 1984.

[6] J. J. Craig, Adaptive control of manipulators through repeated trials.
General Motors Research Laboratories, 1983.

[7] A. Tayebi, “Adaptive iterative learning control for robot manipulators,”
Automatica, vol. 40, no. 7, 2004.

[8] A. P. Schoellig, F. L. Mueller, and R. DAndrea, “Optimization-
based iterative learning for precise quadrocopter trajectory tracking,”
Autonomous Robots, vol. 33, no. 1-2, 2012.

[9] S. Lupashin and R. D’Andrea, “Adaptive fast open-loop maneuvers
for quadrocopters,” Autonomous Robots, vol. 33, no. 1-2, 2012.

[10] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” The
International Journal of Robotics Research, vol. 31, no. 5, 2012.

[11] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predic-
tive control on a quadrotor: Onboard implementation and experimental
results,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on, 2012.

[12] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with appli-
cations to tracking and navigation: theory algorithms and software.
John Wiley & Sons, 2004.

[13] M. I. Ribeiro, “Kalman and extended kalman filters: Concept, deriva-
tion and properties,” Institute for Systems and Robotics, 2004.

[14] The MathWorks Inc., “Matlab, Version R2012a (7.14.0.739),” 2012.
[15] B. D. Anderson and J. B. Moore, Optimal filtering. DoverPublica-

tions. com, 2012.
[16] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback,

and R. D’Andrea, “A platform for aerial robotics research and demon-
stration: The flying machine arena,” Mechatronics, vol. 24, no. 1, 2014.

[17] “PX4 FMU,” www.pixhawk.ethz.ch/px4/modules/px4fmu, accessed
2013-09-11.

5251

