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Abstract— Quadrocopters allow the execution of high-
performance maneuvers under feedback control. However,
repeated execution typically leads to a large part of the tracking
errors being repeated. This paper evaluates an iterative learning
scheme for an experiment where a quadrocopter flies in a circle
while balancing an inverted pendulum. The scheme permits the
non-causal compensation of periodic errors when executing the
circular motion repeatedly, and is based on a Fourier series
decomposition of the repeated tracking error and compensation
input. The convergence of the learning scheme is shown for the
linearized system dynamics. Experiments validate the approach
and demonstrate its ability to significantly improve tracking
performance.

I. INTRODUCTION

The capability of quadrocopters to perform highly dy-
namic, complex, and precise motions has been demonstrated
repeatedly in recent years (see, for example, [1]–[4]). Such
motions are commonly executed by using a first-principles
model of the vehicle dynamics to determine nominal control
inputs, and a feedback control law to ensure tracking of the
nominal trajectory.

In order to account for model mismatches, a number of
learning schemes have been developed. Examples include
those based on sliding mode control and reinforcement
learning techniques [5], neural networks [6], and adaptive
control [7].

When performing the same motion repeatedly, a further
opportunity to improve tracking performance may arise be-
cause many of the disturbances that degrade tracking per-
formance will be similar each time the vehicle performs the
motion. It is thus possible to non-causally correct for these
repeatable disturbances: By using data from previous exe-
cutions to characterize them, model-based correction inputs
can be computed before executing the motion again. Ideally,
these correction inputs are able to fully compensate for the
repeatable disturbances, such that the feedback controller is
only required to compensate for non-repeatable disturbances.

Such iteration-based learning approaches have been suc-
cessfully demonstrated for multi-rotor vehicles performing
high-performance maneuvers. Broadly speaking, the learning
approaches may be separated into two groups:

The first group is characterized by its ability to learn
motions that are parameterized. The motion is thus described
by a (finite) set of design parameters, chosen by the user.
After the execution of the motion, these parameters are
adapted to compensate for disturbances. The direction and
magnitude of the correction may be model-based, or based
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on the user’s intuition. A discussion on the importance of
choosing ‘good’ design parameters may be found in [8],
where a learning algorithm for this kind of parameterized
motions is demonstrated for multiple flips and fast trans-
lations with quadrocopters. A further demonstration of this
class of learning algorithms is provided in [9]. The ability
to shape the tracking performance strongly depends on the
number of parameters that are optimized; in the above
examples, the objective is to minimize the error at specific
time instants (‘key frames’), and a relatively small number
of parameters is sufficient to do so. This makes the methods
computationally lightweight.

The second group of learning approaches considers more
generic motions that need not be specified by parameters.
The system dynamics are considered in discrete time, and
the correction consists of correction values (typically control
inputs or set points) for each discrete time step. After
execution of the motion, a numerical optimization over
the correction values is performed in order to minimize a
metric related to the tracking error. In this optimization, a
model of the system dynamics provides the mapping from
corrections to the tracking error. This approach is commonly
known as a form of iterative learning control [10], and its
application to high performance quadrocopter flight has been
demonstrated [11], [12].

The delimitation between the two groups is not strict.
Indeed, the second group of learning approaches could be
seen as using a very large number of values to parameterize
the correction.

This paper evaluates a technique for non-causally com-
pensating repeated, periodic tracking errors. Specifically, we
consider a motion where the linearized dynamics around
the nominal motion are time-invariant under an appropriate
coordinate transformation. Similar to the second group of
learning algorithms, we do not assume a parameterized
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Fig. 1. The inertial coordinate system O and the vehicle coordinate
system V, used to describe the dynamics of the system.
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motion. However, we reduce the dimensionality of the cor-
rections that we intend to learn by assuming that they are
periodic. This allows us to parameterize the corrections as
the coefficients of a truncated Fourier series. The order of the
Fourier series provides a means to trade off computational
complexity and the ability to compensate for temporally local
or high-frequency disturbances.

The specific motion considered in this paper consists of a
quadrocopter balancing an inverted pendulum and tracking
a circular trajectory [13]. This problem is an interesting
platform for learning algorithms for multiple reasons: Due
to the highly dynamic nature of the motion and the agility
required to balance the pendulum, the full range of the
vehicle dynamics is used. Due to relatively high flight speeds
and fast vehicle attitude changes, unmodeled aerodynamic
effects (see e.g. [14]) significantly influence the dynamics of
the vehicle. Furthermore, the control system employs a time-
varying coordinate system transformation, the errors in which
potentially introduce further periodic errors in the feedback
control loop.

The remainder of this paper is structured as follows:
We explain our motivation for developing the learning al-
gorithm in Chapter II by introducing the flying inverted
pendulum experiment and recapitulating experimental results
that highlight its performance without learning. We then
describe the iterative learning strategy in Chapter III, and
show convergence of repeatable errors. Chapter IV shows
experimental results from the application of the algorithm to
the experiment. Finally, we summarize and discuss potential
research directions in Chapter V.

II. THE FLYING INVERTED PENDULUM EXPERIMENT

This chapter introduces the flying inverted pendulum [13],
an experiment that demonstrates the performance and agility
of quadrocopters. This experiment is the motivation behind
the algorithm presented in Chapter III, and is the basis for
the experimental results in Chapter IV. The objective of
this experiment is to balance an inverted pendulum on a
quadrocopter while the vehicle flies horizontal circles. The
derivations from [13] are reproduced here in abbreviated
form for the purpose of completeness; the reader is referred
to the previously published paper for a more thorough
discussion.

A. Dynamics

The quadrocopter is modeled as a rigid body with six
degrees of freedom: Its position (x, y, z) in the inertial
coordinate system O, and its attitude, represented by the
rotation between the inertial coordinate system O and the
body-fixed coordinate system V, as shown in Figure 1. The
rotation is parameterized by three Euler angles, representing
rotations about the z-axis (α), the y-axis (β) and the x-
axis(γ), executed in this order:

O
VR(α, β, γ) = Rz(α) Ry(β) Rx(γ) . (1)

The control inputs are the rotational rates of the vehicle
about the three body axes (ωx, ωy, ωz) and the collective,

mass-normalized thrust applied by the vehicle along its
body z-axis, (a; in units of acceleration). It follows that the
differential equations governing the vehicle motion are
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where g denotes gravitational acceleration.
The inverted pendulum is modeled as a point mass with

two degrees of freedom, chosen to be the horizontal position
of the pendulum center of mass relative to its base in O (r
along the x-axis, s along the y-axis). Using Lagrangian me-
chanics, the nonlinear equations of motion of the pendulum
can be derived. In the interest of compactness, we state only
that the pendulum acceleration depends on its position and
velocity, and the vehicle acceleration:

[
r̈
s̈

]

= h (r, s, ṙ, ṡ, ẍ, ÿ, z̈) . (4)

B. Coordinate Transformation for Circular Trajectories

The objective of the experiment is to fly circular trajecto-
ries while balancing the pendulum. We introduced a trans-
formation into rotating coordinate systems for the vehicle
position (C) and attitude (W) in [13]. It is then possible
to transform the equations of motion such that, for circular
flight, the nominal states and the linearized dynamics about
them can be described in a time-invariant manner:
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[
r
s

]

=:

[
cos Ωt − sin Ωt
sin Ωt cos Ωt

] [
p
q

]

. (7)

A horizontal circle of radius R, flown at a constant rate
Ω and at constant height, is described by u = R, v = 0,
and ẇ = 0. The quadrocopter and pendulum equations of
motion (2)-(4) can be rewritten in the rotating coordinate
system using the above transformations. It was shown that a
nominal circular trajectory for pendulum and quadrocopter
is then given by the constant nominal state

μ̄ = arctan(−
Ω2R

g
) (8)

ν̄ = 0 (9)

ā =
√

g2 + (Ω2R)2 (10)

q̄ = 0 (11)

Ω2(R + p̄) +
gp̄

√
L2 − p̄2

= 0 (12)
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where L represents the length of the pendulum from its
base to its center of mass. The vehicle yaw angle, α, is not
defined by the motion, and may be chosen separately. In our
experiments, we chose a constant yaw angle α = 0.

C. Feedback Control Design

About this constant nominal state, the dynamics of the
quadrocopter-pendulum system in the rotating C-W coor-
dinate system were approximated by a first-order Taylor
expansion. We denote the system state under the coordinate
transformation (5)-(7) by

x := (u, v, w, u̇, v̇, ẇ, α, μ, ν, p, q, ṗ, q̇) (13)

and use the transformed control input v := (a, μ̇, ν̇, α̇).
The true rotational rate control inputs (ωx, ωy, ωz) can be
recovered for known values of v and x through Equations (6)
and (3). The linear dynamics resulting from a Taylor expan-
sion about the nominal trajectory are then time-invariant:

˙̃x =
∂f (x̄, v̄)

∂x
x̃ +

∂f (x̄, v̄)
∂v

ṽ (14)

where a tilde denotes small deviations from the nominal
trajectory, and f (x̄, v̄) denotes the system dynamics con-
sisting of Equations (2)-(4) under the coordinate transfor-
mation (5)-(7). An infinite-horizon linear quadratic regula-
tor [15] was designed to stabilize the system around the
nominal trajectory. We denote the resulting time-invariant
state feedback law by ṽ = Kx̃.

D. Flight Performance

Results from the previous experiment [13] demonstrate
the ability of the presented control system design to reliably
stabilize the vehicle-pendulum system during circular flight.
However, significant trajectory tracking errors occur, as can
be seen for an exemplary experiment in Figure 2. Note that
the errors contain two clearly distinguishable components:
A mean error, and an error that oscillates at the rate at
which the circle is flown (Ω). A possible explanation for
these oscillating errors is the rotating coordinate system
transformation (5)-(7), which would map a constant error
in the inertial coordinate system to such an oscillating error
in the rotating coordinate system.

Figure 2 also shows that the tracking error largely re-
peats for every round of the circle that is flown: The
experiment may be considered to be a periodic motion
with relatively large repeatable disturbances deteriorating
the tracking performance of the feedback control law. As
discussed in Chapter I, the repeatability of the disturbances
offers the opportunity to non-causally compensate for them.
We develop a learning algorithm for this purpose in the
following chapter, and will revisit the above experiment to
present experimental results thereafter.

III. LEARNING ALGORITHM

The approach presented in this paper is conceptually simi-
lar to [8], which presents an adaptation strategy to correct for
state errors at discrete points in time of parameterized motion
primitives. However, we consider periodic errors (instead

Time t (s)

Error (m)
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ṽ
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Fig. 2. Errors in the rotating coordinate system (from [13]): Pendulum
position error (p̃, q̃) and quadrocopter position error (ũ, ṽ). At t = 2 s,
the controller is switched from a constant nominal position to a circular
trajectory with R = 0.1 m. Large repeating errors can be seen.

of errors at specific points in time), and do not require
parameterization of the maneuver. We propose a correction
strategy, and show that, under the assumption of linear time-
invariant system dynamics, this strategy indeed fully corrects
for such recurring errors.

A. Core Concept

The core idea of the adaptation law presented herein is to
measure the tracking error over the period of the maneuver,
and approximate it as a truncated Fourier series. In order
to compensate for recurring errors, a correction input – also
consisting of a truncated Fourier series – is applied to the
system. For a known tracking error, the coefficients of the
correction input Fourier series are computed by inverting
the linear time-invariant dynamics of the system about the
nominal trajectory. In order to increase the robustness against
non-repeatable disturbances, the adaptation law uses a step
size, permitting a trade-off between speed of convergence
and noise rejection.

B. Adaptation Control Input

In addition to the state feedback control input, we apply
an adaptation control input v̂ to the system. Using A and B
to denote the derivatives with respect to the state and input,
respectively, we can then rewrite Equation (14) as

˙̃x = Ax̃ + B (Kx̃ + v̂) (15)

= (A + BK)
︸ ︷︷ ︸

=:Ā

x̃ + Bv̂ (16)

where Ā represents the closed-loop linearized dynamics of
the system.

C. Propagation of Fourier Series Inputs Through the System

Now we will use the adaptation control input v̂ to non-
causally compensate for repeated disturbances. We parame-
terize this compensation by a Fourier series of order N and
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fundamental frequency ω:

v̂ = r0 +
N∑

k=1

rk cos (kωt) +
N∑

k=1

sk sin (kωt) . (17)

It is straightforward to show that, to first order, the
perturbation state x̃ in reaction to this adaptation control input
will also be a Fourier series of order N [16]:

x̃ = a0 +
N∑

k=1

ak cos (kωt) +
N∑

k=1

bk sin (kωt) (18)

and that the coefficients relate to the coefficients of the input
by

0 = Āa0 + Br0 (19)

−kωak = Ābk + Bsk (20)

kωbk = Āak + Brk (21)

for k = 1 . . . N .

D. Iteration-Domain Feedback Law

Consider a tracking error output that is a linear combina-
tion of the states:

ỹ = Cx̃ . (22)

Our objective is to eliminate the effects of errors described
by the Fourier series (18) on the output. Due to the truncation
of the Fourier series, higher-frequency components are not
considered, and the order of the series would have to be
increased in order to compensate for them.

The dimension of ỹ is not defined by the problem, and
may be chosen by the user as the set of error outputs that
should be minimized. If the dimension of ỹ is larger than the
dimension of the adaptation control input v̂, a full correction
of all errors cannot be expected.

The above equations (19)-(21) can be written in matrix
form, and multiplied by C in order to describe the output
tracking errors (22):
[
B 0
0 B

] [
sk

rk

]

=

[
−kω −Ā
−Ā kω

] [
ak

bk

]

(23)

[
C 0
0 C

] [
−kω −Ā
−Ā kω

]−1 [
B 0
0 B

]

︸ ︷︷ ︸
=:J

[
sk

rk

]

=

[
C 0
0 C

] [
ak

bk

]

︸ ︷︷ ︸
=:ek

.

(24)

The matrix J represents the linear mapping of input
coefficients sk, rk to tracking error output coefficients ek,
and is the equivalent to the nominal maneuver Jacobian for
parameterized motions described in [8].

Let J+ denote the Moore-Penrose pseudoinverse [17] of J
(in the special case that J is square, J+ = J−1 holds).
Note that the existence of the inverse is not given for all
systems. For the purpose of this paper however, we assume
its existence and intend to investigate this question further
in the future. Assume that we have executed the trajectory
for iteration i−1, and measured the tracking error ỹi−1. Let

ei−1
k be the Fourier coefficients of the tracking error output

of iteration i − 1. The iteration-domain feedback law is
[
sk

rk

]i

=

[
sk

rk

]i−1

− γJ+ei−1
k (25)

where γ is the step size parameter. The step size parameter
can be used to trade off convergence of errors and noise
rejection. This may be necessary because ei−1

k usually con-
tains components caused by non-repetitive process noise and
measurement errors, and is therefore only an estimate of the
true repeatable tracking error.

E. Convergence

Using the above feedback law, the tracking error Fourier
coefficients ek evolve as follows:

ei
k = ei−1

k + J

([
sk

rk

]i

−

[
sk

rk

]i−1
)

(26)

= ei−1
k − γJJ+ei−1

k . (27)

If J+ is the right inverse of J (the interpretation of this is
that there are not more tracking error outputs than adaptation
control inputs), it follows that the tracking error converges
to zero for 0 < γ ≤ 1:

ei
k = (1 − γ) ei−1

k . (28)

Note that if the tracking error dimension is lower than
the input dimension, the correction term J+ek is the least-
squares solution to an underconstrained set of equations [17],
implying that the Euclidian norm of the Fourier coefficients
is minimized. By Parseval’s theorem [18], this is equivalent
to minimizing the energy of the correction input signal v̂.

Now consider the case where J+ is not the right inverse,
implying that there are more tracking error outputs than
inputs. In this case, the error dynamics are

ei
k =

(
I − γJJ+

)
ei−1

k (29)

=
(
I − γJ

(
JT J

)−1
JT
)

ei−1
k (30)

where I denotes the identity matrix and (∙)T denotes the
transpose of a matrix. Assuming that J is full rank, we apply
a singular value decomposition [17]:

J = U

[
Σ
0

]

V T (31)

ei
k =

(

I − γU

[
I 0
0 0

]

UT

)

︸ ︷︷ ︸
=:M

ei−1
k . (32)

Using a similarity transformation [17], we show that the
error does not diverge by computing the eigenvalues of M :

eig (M) = eig
(
UT MU

)
(33)

= eig

(

I − γ

[
I 0
0 0

])

(34)

= {1 − γ, . . . , 1 − γ, 1, . . . , 1} . (35)

This implies that, under the appropriate coordinate transfor-
mation, the tracking error coefficients either reduce to zero
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over time, or remain constant. Note that because this case
implies fewer control inputs than tracking errors, it is to be
expected that not all components of the tracking error Fourier
series can be driven to zero.

IV. EXPERIMENTAL RESULTS

This chapter presents the application of the learning algo-
rithm to the flying inverted pendulum experiment introduced
in Chapter II. We start by presenting the experimental setup,
then discuss the implementation of the learning algorithm,
and finally show results obtained.

A. Experimental Setup

Experiments were carried out in the Flying Ma-
chine Arena, an aerial vehicle development platform at
ETH Zurich [19]. The quadrocopters used in the experiments
are modified Ascending Technologies ‘Hummingbird’ vehi-
cles [20] equipped with custom electronics to allow greater
control over the low-level control algorithms. A small cup-
shaped pendulum mounting point is attached to the top of
the vehicle, and the pendulum’s center of mass is 59 cm
away from its base. A photograph of the experimental setup
is shown in Figure 3. An infrared motion tracking system
measures the position and attitude of the vehicle, as well as
the position of the pendulum. A Luenberger observer is used
to filter the sensory data and provide full state information to
the controller. The observer also compensates for systematic
latencies occurring in the control loop by using the control
inputs to project the system state into the future.

B. Implementation of the Learning Algorithm

The learning algorithm was implemented such that adap-
tation of the control inputs occurs without interrupting the
circling motion of the vehicle. Each iteration of the learning
algorithm consists of three steps:

1) Measure the tracking error ỹ for multiple circles. While
measuring the error over one circle would suffice,
averaging it over several circles improves the rejection
of non-repetitive disturbances. In our experiments, the
tracking error was measured and averaged over three
circles.

2) Compute the updated input correction Fourier series v̂
according to Equation (25).

3) Wait for several circles to allow the system to con-
verge under the new input correction. Our experiments
showed that this step is important in order to correctly
measure the systematic tracking error in the next
iteration. For the experiments presented in this paper,
we chose to wait for two circles before starting the
error measurement for the next iteration.

We chose the tracking error output to be the vehicle position
error in the rotating coordinate system: ỹ = (ũ, ṽ, w̃). This
implies that the objective is for the vehicle to correctly
track the horizontal circle in size, phase, and height. The
nominal trajectory was set to a circle radius R of 0.3m.
Errors in the pendulum position p̃, q̃ are not penalized in
these experiments.

Fig. 3. Photograph of experiments: The vehicle flying a circle while
balancing the inverted pendulum.

The update rate γ was chosen to be 0.3, a value that
showed a good trade-off between noise rejection and speed
of convergence in our experiments. The order of the error
and input Fourier series, N , was varied during experiments.
It was found that orders higher than N = 1 had little impact
on the tracking performance during our experiments.

C. Results

The circular motion of the pendulum was started with
all correction coefficients set to zero, i.e. v̂ = 0. Fig-
ure 4 shows the Euclidian norm of the error Fourier series
coefficients over ten iterations. It can be seen that initial
tracking performance is relatively poor with peak tracking
errors of 64 cm. The errors are then quickly reduced over the
first three iterations, after which non-repeatable disturbances
cause them to vary from iteration to iteration while small
improvements are made. After ten iterations of the learning

Iteration Number i
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Fig. 4. Evolution of the tracking error output Fourier coefficients during
learning. The lines shown represent the Euclidian norm of the Fourier
coefficients: ||Ca0|| (solid blue), ||Ca1|| (dashed green) and ||Cb1|| (dotted
red). Higher order terms are significantly smaller, and have been omitted in
this figure.
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Fig. 5. Horizontal flight trajectory of the quadrocopter over two rounds of
the circular trajectory. The dashed blue line shows the flight path before
learning, the solid red line shows flight after ten iterations of learning.
The nominal trajectory is shown in dotted black. Errors in height are not
shown; they were reduced from a maximum error of 0.42 m to a maximum
of 0.01 m.

algorithm, the peak tracking error is reduced to 11 cm, and
subsequent iterations do not improve tracking performance
significantly.

Figure 5 shows the flight path of the vehicle in the horizon-
tal plane before learning and after the tenth learning iteration.
Note that the initial flight path shows large errors, with the
flown circle being much too large, shifted from the desired
centre point, and warped. After ten learning iterations, the
tracking performance has improved considerably, although
remaining, largely unrepeatable, disturbances still prevent the
vehicle from following the trajectory perfectly.

V. CONCLUSION AND OUTLOOK

This paper evaluated an iterative adaptation scheme that
improves tracking performance when periodic disturbances
cause poor tracking under feedback control. We have derived
convergence properties for the presented method, and have
shown that our approach greatly improves performance in
an experiment where a quadrocopter balances an inverted
pendulum while flying circles.

The method was presented with a focus on the specific
problem of trajectories for quadrocopters, and a number of
assumptions were made in order to simplify derivations. As
is, the method is limited to dynamic systems where the
linearization around the nominal trajectory is – under an
appropriate coordinate transformation – time-invariant. We
intend to investigate transferability to more general system
descriptions, and hope to perform more experiments to verify
its applicability to other problems.

One open question is the choice of the order of the Fourier
series used to represent tracking errors and correction inputs.
While we chose the order manually for our experiments,
more systematic approaches could be considered.

Furthermore, it would be worthwhile to investigate
whether learnt correction values could be transferred to
similar maneuvers, as proposed for Iterative Learning Con-
trol in [11]. This would be particularly applicable to our

experiment because attempts to fly large circles with the
inverted pendulum currently lead to crashes before learning
permits correct tracking of the trajectory.
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