
Knowledge Transfer for High-Performance Quadrocopter Maneuvers

Michael Hamer, Markus Waibel and Raffaello D’Andrea

Abstract— Iterative Learning Control algorithms are based
on the premise that “practice makes perfect”. By iteratively
performing an action, repetitive errors can be learned and
accounted for in subsequent iterations, in a non-causal and feed-
forward manner. This method has been previously implemented
for a quadrocopter system, enabling the quadrocopter to learn
to accurately track high-performance slalom trajectories. How-
ever, one major limitation of this system is that knowledge from
previously learned trajectories is not generalized or transferred
to new trajectories; these must be learned from a state of
zero experience. This paper experimentally shows that the
major dynamics of the Iterative Learning Control process can
be captured by a linear map, trained on previously learned
slalom trajectories. This map enables this prior knowledge to
be used to improve the initialization of an unseen trajectory.
Experimental results show that prediction based on a single
prior is enough to reduce the initial tracking error for an unseen
trajectory by an order of magnitude.

I. INTRODUCTION

Pioneered in [1], Iterative Learning Control (ILC) algo-
rithms are one method for improving the tracking accuracy
of repeated trajectories. These algorithms monitor tracking
errors along a repeated trajectory, and compensate for these
errors by modifying the input to the next iteration. An
overview of ILC algorithms and results is presented in
two recent surveys on the topic and the references therein
[2], [3]. These results demonstrate the effectiveness of ILC
algorithms at compensating for repetitive disturbances along
a single trajectory.

This paper focuses on a subclass of ILC algorithms,
namely Indirect Iterative Learning Control (IILC), summa-
rized in [3]. While ILC directly alters the open-loop input
to the system, IILC alters the input trajectory given to a
stabilizing feedback controller, which then converts this input
trajectory into system control inputs. For the purposes of this
paper, it is assumed that the input trajectory has the same
units as the desired output trajectory; for example, position
is both commanded and desired.

Although ILC (and by extension, IILC) algorithms are
effective at improving tracking error for a single trajectory,
the results of trajectory learning are not generalized, and
thus new trajectories must be learned from a state of zero
experience (ie. assuming zero disturbance and nominal model
dynamics). This problem has been previously addressed in
[4]–[8].

The problem of knowledge transfer in ILC is addressed
in [4], where the authors propose using locally weighted
learning to build a database of previous trajectory segments,

The authors are with the Institute for Dynamic Systems and Control, ETH
Zürich, Switzerland {hamerm,mwaibel,rdandrea}@ethz.ch

and successfully use a nearest-neighbor approach to find
similar historical trajectory segments to improve the ILC
initialization for an unknown trajectory.

A second solution to the problem of ILC knowledge
transfer is presented in [5], [6], where the authors model
the system’s inverse dynamics using a neural network. This
approach was later adopted in [9].

A third approach, presented in [7], is to apply approximate
fuzzy logic methods to the previously learned trajectories,
and to use these methods to construct improved predictions.

Presented in [8] is a fourth approach to the problem of
ILC knowledge transfer, where the authors use a matrix
transformation to capture the difference between a previously
executed trajectory and an unseen trajectory. This transfor-
mation and knowledge of the previously learned input is then
used to predict the required input for the unseen trajectory.

All four of the previously discussed approaches have been
successfully demonstrated on various physical systems.

This paper takes a different approach to the problem of
knowledge transfer, focusing specifically on IILC. Experi-
mental results show that the major dynamics of the IILC
learning process itself (as opposed to the acted-upon system)
can be approximated by a linear mapping around the class
of desired trajectories. This approach, which we named
“Windowed Learning Transfer” (WLT) for the purposes of
this paper, is presented in detail in Section II.

The WLT method considers the required input at each
point in time as a linear combination of previous and future
states from the nominal trajectory. These previous and future
states are compiled into a time-window, to which weighting
factors are fitted using a linear least-squares approach. Due
to its simple, least-squares-based structure, the proposed
method is extremely fast and requires no complex training
algorithms.

The effectiveness of WLT at reducing initial tracking
error is experimentally demonstrated in Section III, where
we show an application to a quadrocopter slalom learning
experiment [10]. In this experiment, an optimization-based
IILC algorithm enables a quadrocopter to learn to fly a high-
performance trajectory through an arbitrary configuration of
slalom poles. Experimental results show that once a single
slalom course has been flown, the reference input for a
subsequent, arbitrary slalom configuration can be predicted
using WLT, and the initial tracking error can be reduced from
an average RMS error of 1.47m when initialized nominally,
to 0.20m when initialized with a WLT prediction trained on
a single prior. The WLT prediction often allows the slalom

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1714

course to be successfully flown without additional learning1.

II. PRELIMINARIES

In this section, IILC and WLT are defined mathematically.
Assumptions made by this mathematical construction are
also highlighted.

A. Indirect Iterative Learning Control

For the purposes of this paper, we define the IILC problem
as follows. Consider a feedback-controlled system F , which
when given a time-lifted2 input trajectory u, produces a time-
lifted output trajectory s. This system is subject to stochastic
disturbances, modeled as the zero-mean random variable d,
and is mathematically represented as:

s = F(u, d). (1)

Consider now the problem of tracking the kth desired trajec-
tory. This desired trajectory is represented in the time-lifted
domain as s̄k. IILC addresses the problem of tracking s̄k by
iteratively improving the input to the system based on the
output tracking error from previous trials.

Using subscript to denote the iteration-index, the IILC
process is initialized with uk0 = ûk, where ûk is an estimation
of the input required to achieve s̄k and is often calculated
from a nominal understanding of F .

Applying the input of the jth iteration ukj to the system in
(1), produces the output trajectory skj . Through comparison
of skj with the desired trajectory s̄k, the tracking error at each
point along the trajectory is computed and used to improve
ukj+1, the input applied during the next iteration [11].

As the IILC process iteratively improves the input, the
system’s output converges to the desired output trajectory
[11].

After m iterations, the results of the IILC process satisfy
an application-defined stopping criteria. At this point, the
input ukm is considered to be the result of the IILC process.

From this point forward, only the final result of the IILC
learning process is considered. For this reason we drop the
iteration subscript and rewrite the result as uk.

We then summarize the IILC process described above as:

uk = IILCF (s̄k , ûk). (2)

B. Problem Representation

As per (2), the IILC process is initialized with ûk, a
prediction of the input trajectory required to achieve the
desired trajectory s̄k. After the application-defined stopping
criteria of the IILC process are satisfied, the satisfying input
trajectory uk is returned.

The WLT method presented in this paper is one method of
extracting deterministic behavior from previous IILC results
and using this knowledge to improve the initialization of
future IILC processes. For each prior IILC result, the WLT

1A video demonstration entitled “Quadrocopter Slalom:
Learning from prior experience” is publicly available at
http://www.flyingmachinearena.org/videos/

2A time-lifted trajectory is defined to be the stacked vector of all time
points of the trajectory, ie. u =

[
u[0] u[1] · · · u[N]

]ᵀ

method is trained on the desired trajectory s̄k and the
learned input trajectory uk. Note that both trajectories can be
trajectories in more than one spatial dimension. This paper
focuses on the learning of trajectories in a flat plane, defined
by x and y coordinates, thus s̄k and uk are trajectories in
both x and y.

Given a collection of desired trajectories (s̄0 · · · s̄k) and
the respective learned input trajectories (u0 · · ·uk), the task
is then to determine the mapping M such that given an
unseen desired trajectory s̄k+1 the required input uk+1 can
be predicted. We therefore assume the existence of a mapping
M such that:

s̄i
M−−→ ui ∀i ∈ [0, k]. (3)

In addition to existence, we also assume thatM is time- and
state-invariant, remaining constant across all trajectories and
time-windows.

Once the mappingM has been found, prediction of uk+1

given s̄k+1 follows as:

s̄k+1 M−−→ ûk+1. (4)

This method of learning transfer (akin to those presented in
[4]–[8]), serves to improve the initialization accuracy of the
IILC system, rather than acting as a replacement. Prediction
errors made in ûk+1 will thus be accounted for by the IILC
algorithm during subsequent iterations.

C. Constructing a time-window

Central to WLT is the idea of a time-window. We assume
that every point of the required input trajectory uk can be
approximated by a linear combination of the surrounding
points in the desired trajectory s̄k.

Data points towards the beginning and ends of the trajec-
tory are accounted for by extending the trajectory, assuming
that it begins and ends at standstill. Using superscript to
denote trajectory-index and square-braces to denote discrete-
time index, we define:

γk[j] =

s̄k[0] if j < 0

s̄k[j] if 0 ≤ j < Nk

s̄k[Nk − 1] if j ≥ Nk

. (5)

Based on the above, a windowing function operating on a
time-lifted reference trajectory s̄k, is defined as:

W(s̄k) =

γk[0−H] · · · γk[0] · · · γk[0 +H]

γk[1−H] · · · γk[1] · · · γk[1 +H]

...
...

...

γk[N −H] · · · γk[N] · · · γk[N +H]

 . (6)

The horizon parameter H defines how many future and past
data points are included in the window. Based on this, the
actual window width is given by W = 2H + 1. Using the
definitions from (5), (6), we define the learning process,

1715

based on k + 1 previous IILC results, as:
u0

u1

...
uk

 =

W(s̄0)
W(s̄1)

...
W(s̄k)

 · θ. (7)

This is a least-squares problem for the parameter vector
θ, where the ui and s̄i represent complete trajectories in
the time-lifted domain, not individual points on a trajectory.
Once fitted, the parameter vector θ can be used for predic-
tion:

ûk+1 =W(s̄k+1) · θ, (8)

thus addressing the problem statement, outlined in Subsec-
tion II-B.

III. TRANSFER OF PRIOR LEARNING TO UNSEEN
QUADROCOPTER-SLALOM TRAJECTORIES

In this section, the WLT methodology is developed with
respect to a quadrocopter slalom flying experiment.

A. Experimental Setup

Shown in Fig. 1, the experimental setup used to generate
IILC-learned trajectories employs IILC to enable a quadro-
copter to learn and precisely fly a slalom trajectory between
an arbitrary configuration of poles.

This experiment was first presented in [10], where the
authors demonstrated that the desired trajectory for an ar-
bitrary configuration of slalom poles can be accurately and
repeatably learned using IILC. The IILC process is initialized
with the configuration’s desired trajectory and a nominal
input trajectory, and uses the optimization-based IILC ap-
proach presented in [11] to adapt the input trajectory based
on tracking errors from previous iterations. This process is
continued until the desired trajectory is accurately followed.

In this experimental setup, the quadrocopter is controlled
by a feedback controller, operating at 50Hz. This controller is
provided with a reference trajectory in both x and y, and with
constant z and yaw coordinates. The IILC process operates
in an indirect manner by updating the x and y input to the
system’s controller based on previous position errors. The
described system interconnection is shown in Fig. 2.

B. Windowed Learning Setup

As described in Subsection III-A, the slalom experiment
learns trajectories in both x and y dimensions. With reference
to (6)–(7), and using subscript x and y to denote the respec-
tive trajectory components, we define the learning problem,
where θxx, θxy, θyx, θyy ∈ R(2H+1)×1, as:

u0x u0y

u1x u1y
...

...

ukx uky

 =

W(s0x) W(s0y)

W(s1x) W(s1y)

...
...

W(skx) W(sky)

 ·
[
θxx θyx
θxy θyy

]
. (9)

Fig. 1. A photograph of the quadrocopter slalom experiment, showing a
quadrocopter flying an aggressive trajectory through a set of poles, which
define the course. In this experiment, IILC is used to enable the quadrocopter
to accurately follow this high-performance trajectory. The WLT method
builds upon this setup, allowing the transfer of learning between different
slalom configurations, thus improving the initial slalom performance when
compared with a nominal initialization. Courtesy of [10].

For example:

u0x =
[
W(s0x) W(s0y)

]
·
[
θxx
θxy

]
(10a)

u0y =
[
W(s0x) W(s0y)

]
·
[
θyx
θyy

]
. (10b)

This formulation allows for cross coupling terms between
x and y trajectories (given by parameter vectors θxy and θyx).
Further extensions are possible, such as the introduction of a

Fig. 2. The block-diagram interconnection of the system’s components.
The quadrocopter is controlled via a trajectory following feedback controller.
This feedback controller receives an input from the ILC system, adjusted
based on position tracking errors from previous attempts. Courtesy of [10].

1716

−4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

X Position [m]

Y
 P

o
si

ti
o
n
 [

m
]

Example IILC−Learned Trajectory

Slalom Poles

Desired Trajectory

IILC Learned Input

Fig. 3. The blue input trajectory is learned by the IILC system as an input
that causes the system to acceptably track the desired trajectory (dashed)
around a set of slalom poles. This figure shows one of 10 such slalom
courses, which were used as training data for the WLT algorithm. The
problem addressed by this paper and by the WLT method, is the estimation
of the blue input trajectory, given a previously unseen desired trajectory,
and knowledge of previously flown trajectories.

constant component to the window matrix, or learning of
offsets from the desired trajectory; however tests showed
little improvement when these extensions were introduced.

Also note that the window matrix is constructed from
actual output trajectories si. This contradicts (6), where the
desired trajectories s̄i were used. The quadrocopter slalom
system used for these experiments terminates learning once
the quadrocopter can fly successfully through the slalom
course, rather than waiting for convergence to the desired
trajectory. The implication of this is that accepted flights do
not always accurately track the desired trajectory, thus in
order to better capture the system dynamics, si is used in
the learning process.

For the purposes of this experiment, the window horizon
parameter was selected as H = 50, implying that each
window W(·) and parameter vector has size 101. With this
selection, one second of historical data, and one second of
future data (for both x and y trajectories) is included within
the window, allowing for the system’s delayed dynamics
to be captured by the fit. Larger horizons were tested, but
showed little benefit.

C. Summary of experiments

Using the experimental setup presented in Subsection III-
A, 13 separate slaloms were learned, each using a different
placement of slalom poles. For each learned slalom, the
output trajectory si and the IILC learned input trajectory ui

are recorded. Both trajectories consist of x and y coordinates.
One example of a slalom course learned by the IILC system
is shown in Fig. 3.

The 13 learned slaloms were divided into two sets, with
10 slaloms used for training, and the remaining three used as
test data, presented in Section IV. Training data comprised
four three-pole and six four-pole slaloms, while test data
comprised two three-pole, and one four-pole slalom.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

R
M

S
E

 [
m

]

Items in training set

RMSE Prediction Error

Mean

Min/Max

Fig. 4. Ten slaloms were learned and WLT parameters were trained using
all possible combinations of these learned slaloms. These trained parameters
were then used to predict the results of the slalom courses that were not
included in the respective combination. This figure shows the prediction
errors made for a varying number of items in the training set. The full set
of 10 slaloms was used to predict every learned slalom (although all were
included in the training set). This value represents the best error reduction
possible using the algorithm when applied to the training set. Also apparent
in this figure is the over-fit when only one trajectory is used for training.

D. Transferability of Learning

To investigate the transferability of learning between
slaloms, we took the training set of 10 trajectories (intro-
duced in Subsection III-C) and, beginning with one item in
the training set and progressing through to a full training set
of 10 trajectories, generated all (

∑10
r=1 10Cr = 1023) possible

combinations of training sets. A separate WLT parameter
vector was then trained for each combination and was used
to predict the slaloms that were not included in the respective
combination of the training set. The full training set of 10
trajectories was used to predict all slaloms and represents
the best error reduction achievable using the WLT algorithm
when applied to this training set.

For example, for training sets consisting of six priors,
10C6 = 210 combinations were generated. One such com-
bination is {1, 4, 5, 6, 7, 8}, which was then used to predict
the remaining four slaloms, {2, 3, 9, 10}.

Prediction accuracy was measured using the Root Mean
Squared Error (RMSE) between the predicted and the IILC-
learned input trajectory. Results of the aforementioned inves-
tigation are shown in Fig. 4. Also apparent is the over-fit for
small training sets.

E. Mitigation of Overfitting

As apparent in Fig. 4, the proposed WLT algorithm over-
fits the data if only a single training trajectory is used for
training. This could be mitigated by only applying the WLT
algorithm after two or more slaloms have been learned by
the IILC process. Another approach to mitigating over-fit is
parameter reduction.

As discussed in Subsection III-B, a window horizon of
H = 50 was used, which resulted in a window matrix
with 202 parameters. Using the full training set, parameter
redundancy was investigated by iteratively removing the
lowest magnitude parameter from the window matrix and
recalculating the least-squares fit for the reduced window. For
each iteration, the RMSE error along all training trajectories
was recalculated. This analysis found that a subset of nine
parameters resulted in a prediction RMSE of 18.9cm, in

1717

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5
R

M
S

E
 [

m
]

Items in training set

RMSE Prediction Error

Mean

Min/Max

Fig. 5. This figure draws a comparison with Fig. 4, and shows the
performance of the WLT algorithm when the principal 9 components
from 202 are selected. This 4.5% accounts for 93% of full-set training
performance, while resulting in improved performance for smaller training
sets. Parameter reduction solves overfitting issues identified in Subsection
III-D, and allows prediction after only a single slalom has been learned.

comparison to an RMSE of 17.6cm when the full window
was used – 93% of performance is given by only 4.5% of
the parameters.

The location of these parameters shows a dependence in
θxx and θyy on both prior and future states ±0.5 seconds from
the current state, and a cross-coupled dependence in both
θxy and θyx on future states 1 second from the current state.
This non-causal dependence is not a problem, as trajectories
are precalculated and supplied open-loop to the system’s
controller (Subsection III-A).

Using these nine parameters, the analysis presented in
Subsection III-D was repeated. This yielded the results
shown in Fig. 5. A comparison to Fig. 4 shows that over-
fitting issues have been significantly reduced and that the
prediction performance remains approximately constant, al-
lowing prediction after only a single slalom has been learned.
Improvements to prediction are still possible by training from
multiple trajectories, although these are relatively minor.

F. Prediction Accuracy

Using the nine parameters identified in the last subsection,
the WLT algorithm’s prediction ability was tested. A separate
WLT parameter vector was trained for each of the 10 slaloms
in the training set. These trained parameter vectors were
subsequently used to predict the other nine trajectories in the
training set. Example results of this prediction are shown in
Fig. 6.

These results show that the primary dynamics of the input
trajectory can be reconstructed from the desired trajectory,
however subtleties such as higher frequency dynamics, which
differ between trajectories, are not captured well by the
model. Errors that appear towards the end of the trajectory
are a result of the assumption that the trajectory ends at
standstill – a condition not enforced by the slalom IILC
algorithm [10].

IV. EXPERIMENTAL RESULTS

In this section, we present the performance gains achiev-
able by initializing an IILC system with a predicted input,
as opposed to the nominal input, which is calculated using
nominal model dynamics and an assumption of zero exoge-
nous disturbances.

−5

0

5
Best X Prediction

X
 P

o
si

ti
o

n
 [

m
]

0 50 100
−4

−2

0

2
Best Y Prediction

Trajectory Completion [%]

Y
 P

o
si

ti
o

n
 [

m
]

−5

0

5
Worst X Prediction

0 50 100
−4

−2

0

2
Worst Y Prediction

Trajectory Completion [%]

Learned

Predicted

Fig. 6. This figure shows the ability of the WLT algorithm to predict
unseen slalom trajectories, given a desired trajectory. Two trajectories from
the training set are plotted column-wise, with x and y trajectory components
plotted in the first and second row, respectively. For each trajectory, the
IILC-learned input trajectories are shown in thick blue. The red lines show
the various predictions made by a WLT method, which was trained on
a single learned slalom from the training set. Optimally, the predicted
reference inputs (red) would perfectly trace the IILC-learned input (blue).
This figure shows that the major dynamics of the input trajectory are
captured by the algorithm.

As discussed in Subsection III-F and shown in Fig. 6,
knowledge transfer is possible after a single slalom has been
learned, if the discussed parameter reduction is implemented.
To test this, three unseen slalom courses were constructed.
Two of these, referred to as “four pole” and “straight 3”,
had dynamics resembling the training set. The third unseen
trajectory, “aggressive 3”, was designed to require more
aggressive dynamics.

A single prior slalom was then selected from the training
set and was used to predict the required input for each unseen
slalom using WLT. The unseen course was then flown using
the WLT-predicted input and the deviation from the desired
trajectory was recorded. This experiment was repeated for
each of the 10 prior slaloms in the training set, each time
using only a single prior to predict the three unseen courses.
The results of these experiments are summarized in Table I.

Two example experiments are shown in Fig. 7: the flights
corresponding to the prior with the lowest RMS prediction
error across all three slaloms, and those corresponding to the
prior with the highest. This figure and the results summarized
in Table I show that a single prior trajectory can be used to
accurately predict multiple unseen trajectories, with accuracy
of prediction dependent on similarity of dynamics.

V. CONCLUSIONS & OUTLOOK

The method for learning transfer between IILC-learned
trajectories proposed in this paper passes a time-window over
each point of the desired trajectory and uses a linear least-
squares fit over this window to predict the required input at
the respective time step. By considering previous and future

1718

TABLE I
A COMPARISON OF THE INITIAL TRACKING PERFORMANCE OF AN

UNSEEN SLALOM COURSE WHEN INITIALIZED USING WLT. THESE

RESULTS ARE SHOWN GRAPHICALLY IN FIG. 7.

Slalom Four Pole Straight 3 Aggressive 3
Benchmark RMSE [m]

Nominal 1.53 1.43 1.46
Converged 0.07 0.06 0.14

Single-Prior WLT Initialization RMSE [m]
Mean 0.15 0.17 0.28

Std 0.05 0.07 0.08
Min 0.09 0.07 0.20
Max 0.24 0.29 0.45

states, the method is capable of modeling system delays and
non-unit gains.

As shown in Fig. 6 and Fig. 7, the Windowed Learning
Transfer (WLT) method is capable of learning from previous
IILC results and of using this knowledge to predict the re-
quired input trajectory for an unseen trajectory. Furthermore,
by reducing parameters to a primary subset (Subsection
III-E), only a single prior trajectory is required for order-
of-magnitude performance gains; our experimental results
showed that using a single prior to predict and initialize the
input for an unseen slalom course decreased initial tracking
error (Fig. 7) from an average RMS tracking error of 1.48m
(when initialized nominally), to 0.20m (when initialized with
a WLT prediction trained on a single trajectory).

However as shown in Fig. 6, WLT captures only the
dynamics transmitted through the system with a high gain.
Using a more complex (than linear) mapping function may
be able to capture these dynamics, and thus improve perfor-
mance. A further limitation of the WLT method is also its
naivety. The method ignores nominal model knowledge and
the full state trajectory, which could be incorporated into the
window matrix to potentially improve prediction accuracy.
Finally, it is unclear to what degree the primary parameter
subset (identified in Subsection III-E) can be extended to
other trajectories. These questions are left open for further
investigation.

REFERENCES

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
Robots by learning,” Journal of Robotic Systems, vol. 1, no. 2, pp.
123–140, Jan. 1984.

[2] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3,
pp. 96–114, Jun. 2006.

[3] Y. Wang, F. Gao, and F. J. Doyle, “Survey on iterative learning control,
repetitive control, and run-to-run control,” Journal of Process Control,
vol. 19, no. 10, pp. 1589–1600, Dec. 2009.

[4] M. Arif, T. Ishihara, and H. Inooka, “Incorporation of experience
in iterative learning controllers using locally weighted learning,”
Automatica, vol. 37, pp. 881–888, 2001.

−2

0

2

Y
 P

o
s
it
io

n
 [

m
]

WLT Performance − Four Pole

−2

0

2

Y
 P

o
s
it
io

n
 [

m
]

WLT Performance − Straight 3

−4 −3 −2 −1 0 1 2 3 4
−2

0

2

Y
 P

o
s
it
io

n
 [

m
]

X Position [m]

WLT Performance − Aggressive 3

Desired Nominal

Best Prior Worst Prior

Fig. 7. Three unseen slalom courses were constructed and a single prior
slalom was selected from the training set. This single prior was used to
predict and initialize all three unseen slalom courses using WLT. This
process was repeated for all 10 priors in the training set. Two example
experiments are shown in this figure: the flights corresponding to the prior
with the lowest RMS prediction error across all three slaloms (cyan), and
the flights corresponding to the prior with the highest (magenta). Tracking
performance can be compared to the desired trajectory, shown in thick black,
and to the results of a nominal initialization, shown in thin dashed black.
Optimally, the cyan and magenta WLT trajectories should closely track the
thick-black desired trajectory.

[5] ——, “Generalization of iterative learning control for multiple desired
trajectories in robotic systems,” PRICAI 2002: Trends in Artificial
Intelligence, pp. 295–304, 2002.

[6] ——, “Intelligent learning controllers for dynamic non-linear systems
using neural networks,” in Proceedings of the 41st SICE Annual
Conference. SICE 2002., vol. 5, no. 2. Soc. Instrument & Control
Eng. (SICE), 2002, pp. 2782–2787.

[7] S. Gopinath, I. Kar, and R. Bhatt, “Experience inclusion in iterative
learning controllers: Fuzzy model based approaches,” Engineering
Applications of Artificial Intelligence, vol. 21, no. 4, pp. 578–590,
Jun. 2008.

[8] P. Janssens, G. Pipeleers, and J. Swevers, “Initialization of ILC
based on a previously learned trajectory,” in Proceedings of the 2012
American Control Conference, 2012, pp. 610–614.

[9] J. Asensio, W. Chen, and M. Tomizuka, “Robot Learning Control
Based on Neural Network Prediction,” in Proceedings of the 2012
ASME Dynamic Systems and Control Conference, 2012, pp. 1489–
1497.

[10] F. L. Mueller, A. P. Schoellig, and R. D’Andrea, “Iterative learning
of feed-forward corrections for high-performance tracking,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, Oct. 2012, pp. 3276–3281.

[11] A. P. Schoellig and R. DAndrea, “Optimization-Based Iterative Learn-
ing Control for Trajectory Tracking,” in European Control Conference,
vol. 33, no. 1-2, Budapest, Hungary, Apr. 2009, pp. 1505–1510.

1719

