
Cooperative Quadrocopter Ball Throwing and Catching

Robin Ritz, Mark W. Müller, Markus Hehn, and Raffaello D’Andrea

Abstract— This paper presents a method for enabling a fleet
of circularly arranged quadrocopters to throw and catch balls
with a net. Based on a first-principles model of the net forces,
nominal inputs for all involved vehicles are derived for arbitrary
target trajectories of the net. Two algorithms that generate
open-loop trajectories for throwing and catching a ball are also
introduced. A set of throws and catches is demonstrated in the
ETH Zurich Flying Machine Arena testbed.

I. INTRODUCTION

Due to their agility and mechanical simplicity, quadrotor
vehicles are an increasingly popular subject of research.
A rich set of challenging tasks has been recently demon-
strated. Examples include: balancing a pendulum [1]; ag-
gressive maneuvers, such as flight through windows [2] or
flips [3]; cooperative load-carrying [4]; and ball juggling
with a racket [5]. Ball manipulation, such as throwing and
catching, is a visually engaging problem, and without being
aware of the underlying control techniques any bystander can
immediately judge how successful a system is. Especially for
robotic arms, a variety of successful ball catching algorithms
has been demonstrated (for example in [6], [7], [8]),
and recently, an approach for catching a ball with a cup
mounted on a quadrocopter has been introduced [9]. In
this paper, we describe a method that allows a fleet of
quadrocopters, all attached to a shared net, to throw and
catch balls. This touches upon various aspects of recent
flying vehicle research, such as interaction between vehicles,
aggressive maneuvering, real-time trajectory generation for
multiple vehicles, and operating at high pitch and roll angles
violating the near-hover assumption. Fig. 1 shows a snapshot
of three quadrocopters attached to a shared net, which is the
arrangement used to verify the feasibility of the methods
introduced in this paper.

We derive a first-principles model for vehicles attached to
a net in a circular formation, and based on this, generate
trajectories with the intention of throwing and catching a
ball. To estimate the ball’s future state, we use the method
described in [5]. The remainder of this paper is structured
as follows: In Section II, the quadrotor dynamics and the
net forces are introduced. In Section III, the quadrotor
inputs for a given trajectory are derived. In Section IV, a
trajectory class that minimizes the maximum acceleration is
introduced, based on which we derive catching trajectories
in Section V. Further, in Section VI, trajectories allowing
throws are presented. Experimental results are shown in
Section VII, and we conclude in Section VIII. Since we

The authors are with the Institute for Dynamic Systems and Control,
ETH Zürich
{rritz, mullerm, hehnm, rdandrea}@ethz.ch

Fig. 1. Three quadrocopters attached to a net. Three retro-reflective markers
are attached to each vehicle, allowing the system to determine the vehicle
pose. The ball, shown lying in the net, is also retro-reflective to be visible
to the motion tracking system. The vehicles are placed equally distributed
on a circle around the net center.

derive some equations that are too long to be shown here in
an explicit form, an online appendix [10] is made available
at www.idsc.ethz.ch/people/staff/mueller-m.

II. DYNAMICS

In this section we derive the dynamics for a set
of N ≥ 2 quadrocopters that are attached in circular forma-
tion to a shared net.

A. Quadrocopter Model

Each quadrocopter i, i ∈ 1, . . . , N is modeled by a rigid
body and therefore has six degrees of freedom: The trans-
lational position pi = (xi, yi, zi) is measured in the inertial
coordinate frame I, and the attitude is expressed using the
zyx-Euler angles; we first rotate from the inertial frame I to
the body-fixed frame V around the z-axis by yaw ψi, then
by pitch θi around the current y-axis, and finally by roll φi
around the current x-axis. The rotation matrix converting a
vector from the body frame V to the inertial frame I yields

V
I R(ψi, θi, φi) = Rz(ψi)Ry(θi)Rx(φi), (1)

where Rz , Ry , and Rx denote the rotation matrices about
the individual axes.

1) Control Inputs: We model the quadrocopter as taking
four inputs: the rotational rates about the vehicle body axes
ωi = (pi, qi, ri), and the total thrust force Ft,i. We assume
that the body rates ωi can be set without dynamics and
delay, because quadrocopters can reach very high angular

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1735-1/12/S31.00 ©2012 IEEE 4972

accelerations, and because angular rates are typically tracked
by high-bandwidth on-board controllers using feedback from
gyroscopes [3]. All inputs are subject to saturation, as the
propeller motors and gyroscopic sensors have a limited
operating range.

2) Translational Dynamics: Because the thrust force is
aligned with the vehicle’s z-axis, it must be converted from
the body frame V to the inertial frame I. Aside from thrust
and gravity, an unknown force Fnet,i caused by the attached
net acts on the vehicle (an expression for Fnet,i will be
derived in Section II-B). The translational dynamics of the
quadrocopter yield

mquadp̈i =
V
I R(ψi, θi, φi)Ft,i +Fnet,i +mquadg, (2)

where mquad denotes the mass of the quadrocopter, and

Ft,i = (0, 0, Ft,i),
g = (0, 0,−g). (3)

Notice that the mass mquad is assumed to be equal for all
vehicles.

3) Rotational Dynamics: To obtain the angular dynamics,
the body rate inputs ωi are converted to Euler rates. Accord-
ing to [1], this conversion is given byφ̇iθ̇i

ψ̇i

 =

cos θi cosφi − sinφi 0
cos θi sinφi cosφi 0
− sin θi 0 1

−1 piqi
ri

 . (4)

4) System Equations: Based on the translational and an-
gular dynamics derived above, we define the state and the
input vector for the vehicle to be:

si = (xi, vx,i, yi, vy,i, zi, vz,i, φi, θi, ψi),
ui = (pi, qi, ri, Ft,i).

(5)

Finally, we can write down the first order differential equa-
tion that describes the quadrocopter’s dynamics:

ṡi = fi(si,ui), (6)

where fi combines the nonlinear equations (2) and (4).

B. Net Model

As shown in Fig. 2, the net is modeled as a point mass
connected to the N vehicles by elastic strings with free-
length lnet, where the strings are attached to the vehicle’s
center of gravity. The stiffness of the elastic strings is as-
sumed to be high, such that the weight of the net itself and the
weight of the ball do not lengthen the strings considerably.
We assume that the vehicles are equally distributed on a
horizontal circle with radius rnet, and we define the center
of this circle to be the net position pnet = (xnet, ynet, znet),
which is measured in the inertial frame I. The orientation of
the net is given by the yaw angle ψnet; the roll and pitch
angle are defined to be zero.

In accordance with the vehicles being on a circle, we
define the desired position of quadrocopter i, i ∈ 1, . . . , N
to be

pi = pnet +Rz(ψnet + i2π/N)rnet, (7)

with rnet = (rnet, 0, 0). The yaw angle of vehicle i is chosen
to be

ψi = ψnet + i2π/N + π/2, (8)

meaning that the y-axis of the vehicle body frame points
towards the net center and the x-axis is tangent to the circle
(if the vehicle’s roll and pitch angle is zero). As we will
see in Section VI, this choice avoids problems caused by
the Euler angle singularities at θi = ±π/2 when executing
throws.

To allow intuitive notations when deriving the forces
caused by the net, an intermediate coordinate frame Fi is
introduced. The intermediate frame is defined by a rotation
around the inertial z-axis by a yaw angle of

ψFi = ψnet + i2π/N, (9)

hence the net center pnet and the position pi of vehicle i
are in an xz-plane of the intermediate frame. In Fig. 2, the
relevant forces and angles to analyze the net-quadrocopter
interaction are shown. The angle α is defined to be the net
angle and computed as

α =

{
arccos (rnet/lnet) if rnet < lnet
0 otherwise . (10)

When computing the net force Fnet, we distinguish between
two cases:

Case α > 0: The net is not stretched, and elastic forces
are negligible. Assuming the inertia of the net being small
compared to the inertia of the quadrocopter, we neglect the
net’s inertial forces. Further, for reasons of simplicity, we

Fnet

mquadg

α

Ft,i

mballg/N

Fnet

α

lnet

ez,Fi

ex,Fi

mnetg/N

Fhor

φi

rnetpnet pi

ez,V
ey,V

Fig. 2. Schematic illustration of the significant lengths, positions, and
forces in the xz-plane of the intermediate frame Fi. Since N vehicles are
attached to the net, the masses of the ball and the net must be divided by N .
For the drawing, the vehicle’s pitch angle θi is assumed to be zero.

4973

neglect the drag force as well; the net is stateless and only
its steady-state forces are taken into account. Consequently,
we can compute the net force Fnet by balancing it against
the gravitational forces of the net mass. We find

Fnet = (mnet +mball)g/(N sinα), (11)

where mnet and mball denote the net and ball mass, respec-
tively, and g is the gravitational acceleration. If the net is
not currently carrying a ball, mball is set to zero. As we
can see from (11), Fnet grows to arbitrary large values if α
approaches zero; this is caused by the lack of elasticity in
our net model for nonzero α. At some value of Fnet, the
assumption that the strings are not being stretched is no
longer justifiable. To handle this problem during a catch,
the desired net radii are chosen such that the critical range
of α is avoided. To handle this problem during a throw, we
constrain the nominal net force to a maximum value:

Fnet,throw = min (Fnet, Fnet,max), (12)

where Fnet is computed using (11), and Fnet,max is a
constant, user-defined parameter.

Case α = 0: The net radius rnet exceeds the free-
length lnet of the net strings; the elastic forces dominate due
to the high string stiffness. Therefore, all other effects are
neglected. The elasticity of the net is assumed to be linear,
yielding the net force

Fnet = klin(rnet − lnet), (13)

where klin denotes the linear elasticity coefficient.
While the magnitude of the net force is the same for all

vehicles, the direction differs. In inertial coordinates, it is
given by

Fnet,i = Rz(ψnet + i2π/N)Fnet, (14)

where Fnet is the net force vector in the intermediate frame:

Fnet = (−Fnet cosα, 0,−Fnet sinα). (15)

This completes the derivation of the resulting force on
vehicles attached to a net.

III. NOMINAL INPUTS

In order to track the trajectories that will be introduced
in Section V and VI, we first derive the nominal inputs
for a quadrocopter attached to a net for an arbitrary net
trajectory characterized by the net center, the radius, and
the yaw angle trajectory. The following derivations are done
in the intermediate frame Fi; unless otherwise stated, all
vectors and angles refer to the intermediate frame.

A. Thrust Force Ft,i

To derive the required thrust force Ft,i, we first compute
the desired quadrocopter acceleration ai based on the net
trajectory by applying kinematics. Then, we insert ai = p̈i

into the translational dynamics (2), and solve for the thrust
vector:

Ft,i = mquadai − Fg − Fnet,i

=

 mquadax,i + Fnet cosα
mquaday,i

mquad(az,i + g) + Fnet sinα

 . (16)

Consequently, the required thrust force Ft,i is given by the
magnitude of (16). It can be verified that Ft,i increases with
the net radius; at some rnet the desired thrust exceeds its
limits and the system is no longer able to remain in steady-
state.

B. Attitude (ψi, θi, φi)

The desired vehicle acceleration ai does not only dictate
the thrust input Ft,i, but the quadrocopter’s attitude as well.
Therefore, we seek a pitch angle θi and a roll angle φi that
result in the desired thrust vector. As introduced in Section II,
in the intermediate frame Fi the yaw angle ψi is constant
at π/2. It can be verified that the resulting thrust vector of a
vehicle with pitch and roll angle θi and φi, respectively, is
then given by

Ft,i = Ft,i(sinφi, sin θi cosφi, cos θi cosφi). (17)

This expression for Ft,i must match the desired thrust vector
given by (16). Solving the the resulting vector equation yields

φi = arcsin ((mquadax,i + Fnet cosα)/Ft,i),
θi = arcsin (mquaday,i/(Ft,i cosφi)).

(18)

We note that φi > 0 for zero acceleration, hence in steady-
state, all vehicles are tilted away from the net center.

C. Body Rates (pi, qi, ri)

To obtain the nominal body rate inputs (pi, qi, ri), we first
determine the Euler rates (φ̇i, θ̇i, ψ̇i): By taking the total
derivative of (18) with respect to time, we get expressions
for φ̇i and θ̇i, respectively. The vehicle’s yaw rate ψ̇i is
equal to the net’s yaw rate ψ̇net, since the yaw difference
is constant. Knowing the Euler rates, the body rates can be
computed by inverting (4).

IV. MINIMUM MAXIMUM ACCELERATION TRAJECTORY

In this section, we introduce a general, one-dimensional
trajectory class that minimizes the maximum acceleration of
a maneuver with fixed duration. We go on to derive catching
strategies based on these trajectories in Section V.

We seek a trajectory with a given duration from a given
initial to a given final state, that minimizes the absolute max-
imum acceleration. The coordinates (x, y, z) are decoupled
by assuming that each coordinate has an independent range
of allowable jerk kj ∈ [−kmax,j , kmax,j], j ∈ (x, y, z). The
one-dimensional system dynamics for the state vec-
tor sj = (pj , vj , aj) are described by a triple integrator:

ṡj = f(sj , kj) = (ṗj , v̇j , ȧj) = (vj , aj , kj). (19)

4974

For the remainder of the section, the subscript j indicating
the coordinate is dropped to increase readability. Formally,
we seek a solution to the optimizing problem

minimize max (|a|)
subject to ṡ = f(s, k),

s(t0) = s0,
s(tf) = sf ,
k ∈ [−kmax, kmax] ∀t ∈ [t0, tf],

(20)

where the boundary conditions s0 and sf , as well as the
times t0 and tf are given. By exploiting the minimum
principle [11], it can be shown that the resulting optimal
maneuver has at most five intervals:

• [t0, t1): k = ±kmax,
• [t1, t2): k = 0 and a = ±amax,
• [t2, t3): k = ∓kmax,
• [t3, t4): k = 0 and a = ∓amax,
• [t4, tf]: k = ±kmax.

A derivation of this statement is made available in [10].
Fig. 3 shows an example acceleration trajectory of such an
optimal maneuver. In order to find the optimal trajectory for
given initial jerk1, we must determine the four switching
times t1, t2, t3, t4, and the maximum acceleration amax.
For all five intervals of the trajectory, the state vector s can
be integrated analytically, yielding polynomials in time. The
constraints to be fulfilled by the solution are the three final
state conditions s(tf) = s0, and the following condition
at t1 and t3, respectively: Either the interval t2 − t1 vanishes,
which leads to the condition t1 = t2, or a(t1) = ±amax

must hold (analogous for the interval t4 − t3). Hence, five
equations for five unknowns result, meaning that the solution
is fully determined by the conditions. Furthermore, closed-
form solutions can be found for all five unknowns and
are made available in [10]. If the allowable acceleration is
limited to a certain range a ∈ [−alimit, alimit], then one must
verify that amax ≤ alimit holds after the computation. In the
limit case amax = alimit, the trajectory coincides with the
trajectories derived in [12], and hence is time-optimal.

V. CATCH TRAJECTORY

In order to catch the ball, the system requires a trajectory
that brings the net center to the predicted impact location
before the predicted impact time. Furthermore, we decide
to catch the ball, if possible, with zero net velocity and
acceleration, which increases the robustness of the catching
maneuver with regards to errors in the estimated impact
time of the ball. Further, a large net radius at impact is
beneficial for two reasons: First, assuming that the ball
impacts approximately vertically, a large net radius increases
the net area normal to the ball’s impact direction, which,
in turn, increases the robustness with respect to position
errors. Second, the net force grows with the net radius,
hence a large radius at impact increases the tension in
the net, which reduces unpredictable net oscillations and

1The initial jerk k(t0) is unknown, but can only take the two val-
ues ±kmax. Hence, we attempt to compute the optimal maneuver for both,
and then pick the right solution.

t0 t1 t2 t3 t4 tf

-amax

0
a(t0)

amax

a(t)

Fig. 3. Acceleration trajectory of a maneuver that minimizes max(|a|).
Here, the final acceleration a(tf) is zero, which need not be the case in
general.

allows for a more precise positioning of the net center.
To keep the net from swinging, we want to avoid high
accelerations during the catching maneuver. It is therefore a
reasonable choice to construct the catch trajectory based on
the minimum maximum acceleration trajectories introduced
in the previous section. Further, as these trajectories can
be computed quickly using the closed-form solutions, the
catching trajectory can be updated regularly to account for
new estimates of the ball’s impact point and time.

A. Trajectory Generation

Because the maximum acceleration and jerk of the quadro-
copter is limited due to actuator saturations, we must divide
the control effort between going to the impact point and
adjusting the net radius. We decouple these two problems
and compute trajectories that minimize the maximum accel-
eration for each of the two subproblems. Afterwards, the
acceleration trajectories are merged and their feasibility is
checked. The net’s yaw angle is kept constant during a
catching maneuver.

1) Net Position Trajectory: For the net position trajectory,
a minimum maximum acceleration trajectory is planned for
each coordinate (x, y, z). The initial position of the net is
obtained by averaging the positions of all attached vehicles.
The desired net height znet(tf) at catch is chosen by the
user, and to obtain xnet(tf) and ynet(tf), we compute the
crossing point in the horizontal plane in which the ball is
supposed to be caught. The height of this plane is given by

zcatch = znet(tf)− lnet sinα(tf), (21)

where α(tf) results from the desired net radius rnet(tf) at
catch. The catch velocity and acceleration of the net are
defined to be zero. The maximum jerk kmax,j for each
coordinate must be chosen conservatively, otherwise the
desired body rates might be infeasible at the beginning of
the maneuver.

2) Net Radius Trajectory: The net radius trajectory is
defined by two minimum maximum acceleration trajectories:
The first one enlarges the net radius before the ball is caught
and ends as the ball enters the net. The second one decreases
the net radius again after the catch. The corresponding
maximum jerk kmax,r for both intervals is chosen to be small
in order to avoid high body rates. The distance of the radius
adjustment is usually small compared to the required net
center translation, hence a small kmax,r is sufficient.

4975

B. Feasibility

To ensure feasibility, we combine the net center and the
net radius trajectory, and compute the nominal inputs as
derived in Section III. If any input constraints are violated,
then we iteratively reduce the desired net radius adjustment
and generate a new trajectory, until we find a feasible caching
maneuver. If the net radius adjustment has decreased to zero,
and still no feasible solution has been found, then we enter
a second iteration loop: The final velocity and acceleration
are not constrained to zero anymore, but are successively
increased2. Finally, if the impact location cannot be reached
with maximum acceleration during the whole maneuver,
then the catch is identified as not possible with the current
settings.

VI. THROW TRAJECTORY

We seek to plan a trajectory for the quadrocopters, such
that the ball carried by the net attains a vertical velocity
that results in a throw with reasonable maximum height.
We intend to do purely vertical throws; the ball’s nominal
horizontal velocity component is zero. The vertical velocity
of the ball is achieved by first accelerating vertically, and
subsequently accelerating away from the net center with all
vehicles. This leads to a fast rising net radius, extending
the net and accelerating the ball. Since the inertia of the
net is small, and since the quadrocopters pull outwards, the
net suddenly and quickly decelerates when it is completely
extended, and the ball, having a high vertical momentum,
releases from the net and enters a free flight. After that, the
vehicles are pulled back by the elastic strings, and decelerate
such that they come to rest again at a desired net radius.

A. Trajectory Generation

The throw trajectory is described in the intermediate
frame Fi where it is similar for all vehicles. The conversion
to the inertial frame I is straightforward using (9). In the
intermediate frame, the trajectory is two-dimensional; the
vehicle’s position yi and yaw angle ψi are constant, and
during a throw we define the pitch angle θi to be zero. For
a throw taking place within the interval t ∈ [t0, tf], we can
describe the vehicle’s trajectory by the net radius rnet(t), the
net height znet(t), and the roll angle φi(t) = φ(t) as being
equal for all vehicles. The net’s yaw angle ψnet is defined
to be constant during a throw. For reasons of simplicity, we
neglect the net force during nominal throw design, except for
the interval where the net is stretched. The throw consists of
four intervals, and the trajectory is generated by choosing an
appropriate constant mass-normalized thrust and a constant
roll rate for each of these intervals. Due to the constant
inputs we can obtain the position and velocity trajectories by

2The details of the iteration scheme are not within the scope of this paper,
but the basic idea is to increase v(tf) by a constant value in each iteration,
and then to compute a(tf) such that amax = alimit, hence the maneuver
is time-optimal for the decoupled coordinates.

analytical integration3, and consequently explicit solutions
can be found for all throw parameters. Since the closed-
form solutions are too large to be shown here, they are made
available in [10]. Fig. 4 shows the acceleration and position
trajectories of rnet and znet for an example throw. In the
following, the four throw intervals and the initial and final
conditions of the throw are introduced in more detail:

Throw Start, t = t0: Before a throw is started, the net
must be at rest with all quadrocopters being at their steady-
state configuration. The initial net radius rnet(t0) is a design
parameter.

First Interval, t0 < t ≤ t1: During the first interval, the
vehicles accelerate constantly with ath1 along their body z-
axis. Assuming that the net mass is small compared to the
vehicle mass, the steady-state roll angle φ(t0) is small as
well, and the vehicles gain mostly vertical velocity during
the first interval. The acceleration ath1 and the time t1 when
the interval ends are design parameters.

Second Interval, t1 < t ≤ t2: Within this interval, the ve-
hicles begin to turn outwards with the constant roll rate φ̇th2.
The acceleration ath2 is a design parameter, and the end
time t2 as well as the roll rate φ̇th2 must be computed. To
determine these two unknowns, we define the conditions

rnet(t2) = lnet, φ(t2) = π/2, (22)

and hence demand that the roll angle is π/2 at the time when
the net is completely extended. This is beneficial because in
order to add vertical speed to the ball, we seek a high radial
velocity ṙnet at the end of the second interval (which is when
the ball separates from the net). If φ(t2) = π/2, then, towards

3Since the net force is neglected during the integration, small jumps in
the desired attitude will result when we later convert the nominal position
trajectory to nominal inputs. However, experimental results have shown that
the low-level controller can handle these jumps and the performance is not
decreased considerably.

-g

0

ath2

t0 t1 t2 t3 tf

0

lnet

rnet(t)

znet(t)

r̈net(t)

z̈net(t)

Fig. 4. Desired position and acceleration trajectories of a throw in
the intermediate frame Fi. Note that, in order to allow a more compact
plot, r̈net(t) is scaled during the interval [t2, t3], the actual negative
acceleration is larger.

4976

the end of the interval, we can obtain maximum horizontal
acceleration for the chosen mass-normalized thrust ath2.

Third Interval, t2 < t ≤ t3: During the third interval, the
net is being stretched and the vehicles are pulled back
towards the center of the net. The movement is dominated
by the net force Fnet, given by (13). The thrust force ath3 is
a design parameter, but its effectiveness is small. It should
be chosen such that the difference to ath2 is not too large
(to avoid large jumps in the desired propeller speed), and not
near the boundaries of the allowable thrust range, such that
angular corrections do not saturate the individual propeller
motors. As the thrust force is constant, the net radius follows
the trajectory of a linear spring-mass system with natural
frequency

λn =
√
klin/mquad. (23)

During the whole interval, the roll angle is kept constant
at φ = π/2, since it is appropriate to enter the next interval
with φ = π/2. This is because the high negative radial
velocity ṙnet must be reduced. The time t3 when the interval
is left can be computed to satisfy the condition

rnet(t3) = lnet, (24)

with t3 > t2.
Fourth Interval, t3 < t ≤ tf : Within the last interval of

the throw, the vehicles decelerate by applying a constant
acceleration ath4 and a constant negative angle rate φ̇th4.
We pose the final conditions

rnet(tf) = rf , ṙnet(tf) = 0, φ(tf) = φf , (25)

where rf is the desired net radius after the throw, and φf the
corresponding steady-state roll angle. These three conditions
determine the three unknown values ath4, φ̇th4, and tf .

Throw End, t = tf : After the throw, the horizontal ve-
locity of the vehicles is zero, and the net has the desired
radius rf . In general, however, neither the vertical position
offset znet(tf)− znet(t0), nor the vertical velocity żnet(tf)
vanishes. This must be taken into account when planning the
subsequent trajectories, e.g. to catch the ball again or to go
to a desired position.

B. Feasibility
The feasibility of a throw can be verified by computing the

nominal inputs based on the acceleration trajectory derived
above. We allow small jumps in the desired attitude when we
switch between the throw intervals, but if apart from that any
input exceeds its range of allowable values, then the throw
is not feasible and we have to adjust the design parameters.

C. Inclined Throws
Although the throw trajectories described above are de-

signed for vertical throws, experimental results show that in-
clined throws can be achieved by tilting the resulting position
trajectories. However, since we made several assumptions
that are only valid for vertical throws, e.g the net force
being similar for all vehicles, the tilt angle is constrained
to be small. Experiments were successful until a maximum
tilt angle of about 10◦.

VII. RESULTS

In this section, we show experimental results of the
presented methods.

A. Experimental Setup

The experiments were carried out in the Flying Machine
Arena (FMA) at ETH Zurich using modified Ascending
Technologies ’Hummingbird’ quadrocopters [3]. The vehi-
cles are equipped with custom electronics, to allow the
deployment of custom control algorithms. The quadrocopters
receive commands at a frequency of 67Hz through a low-
latency radio link. An infrared motion-tracking system pro-
vides precise measurements of vehicle position and attitude
at a rate of 200Hz. These measurements are fed to a state
observer, which delivers full state information, and com-
pensates also for the expected closed-loop system latency.
Hence, controllers can be designed for latency-free systems
with full state information. For more information about the
FMA we refer to [3].

B. Experimental Results

Since, especially for throws, the desired trajectories con-
tain intervals with high tilt angles, near-hover controllers
are not suitable. Therefore, the computed trajectories were
tracked by linearizing the system dynamics (6) around the
desired trajectory, in order to obtain a time-varying lin-
ear system which was then fed to a finite horizon time-
varying LQR controller [13]. For the experiments, the throw
trajectories were generated at the time when a throw was
initialized, and then tracked by the controller introduced
above. On the other hand, during the catches, a new trajectory
was generated for each controller update with the current
measured net state as initial condition and the predicted
catching position as final condition. In doing so, we can
account for updates of the predicted impact point whose
accuracy improves as we approach the impact time. All
experiments were performed with 3 vehicles, a ping-pong
ball (mball = 6 g), and a net characterized by the parame-
ters lnet = 1.15m, mnet = 0.12 kg, and klin = 107N/m. In
Fig. (5), a series of 56 vertical throws is illustrated. The
ball was always caught at the same height as it was thrown.
After the catch, the net translated back to the origin before
starting the next throw. Each of the 56 throws was caught
successfully. Further, in Fig. (6), an isolated throw and the
subsequent catch are shown; position trajectories for each
coordinate are drawn for the ball, a vehicle, and the net
center. We can see that, before the net is stretched, the
quadrocopter’s x-position has a lag compared to the desired
trajectory. This is a systematic error, probably caused by the
unmodeled drag and inertial forces of the net. The deviations
from the target trajectory after the throw are less predictable.

VIII. CONCLUSION

In this paper we have presented a method for throwing and
catching balls with a net attached to multiple quadrocopters.
It has been shown that this aggressive, highly nonlinear task
can be achieved by tracking simple trajectories, available

4977

impact position x[m]

im
pa

ct
po

si
tio

n
y
[m

]

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 5. Impact location for a series of 56 vertical throws with 3 vehicles.
The mean values (xmean = 8.0 cm, ymean = 4.1 cm) and standard devi-
ations (σx = 16.3 cm, σy = 20.1 cm) are also drawn. The height of these
throws was 3.3m on average, with a standard deviation of 10.9 cm.

as closed-form solutions. Nominal inputs for quadrocopters
circularly attached to a shared mass object have been derived
for an arbitrary net trajectory, which can be used for ball
manipulation, but might also be useful for other applications,
such as cooperative load-carrying. The feasibility of the
methods presented herein has been validated in the ETH
Zurich Flying Machine Arena testbed. Development potential
for the future is, for example, to compensate for systematic
errors during the throws by applying a learning methodology.
Another future task would be to build a map between the
throw parameters and the throw height, allowing the user
to specify a desired height, rather than tuning the throw
parameters manually. Further, an aiming algorithm could
be developed, allowing throws with a substantial horizontal
component towards a desired target point.

REFERENCES

[1] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on, may
2011, pp. 763 –770.

[2] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” in Proceed-
ings of the International Symposium on Experimental Robotics, dec.
2010.

[3] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on, may
2010, pp. 1642 –1648.

[4] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative
grasping and transport using multiple quadrotors,” in Proceedings
of the International Symposium on Distributed Autonomous Robotic
Systems, nov. 2010.

[5] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, sept. 2011, pp. 5113 –5120.

po
si

tio
n
x
[m

]

0

0.5

1

1.5

po
si

tio
n
y
[m

]

0

0.1

0.2

0.3

0.4

po
si

tio
n
z
[m

]

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

2

3

time t[s]

quadrocopter

ball
net

ball
quadrocopter

net

ball

quadrocopternet

throw
started

ball
released

throw
ended

ball
caught

catch
ended

Fig. 6. Position trajectories for each coordinate of a vertical throw followed
by a catch for the ball (blue), the vehicle i = N (red), and the net center
(green). The initial net height, as well as the desired catching height is zero,
thus there is no height offset at the end of the maneuver. The solid lines
denote the measured trajectories, and the dotted ones are the target positions
(except for the ball that has no target trajectory). For the z-trajectory, the
net and the quadrocopter trajectories are almost identical. The measured
net position is obtained by averaging the three vehicle’s positions, and the
target net orientation is set to ψnet = 0. We can see that, due to some
disturbances, the throw is not exactly vertical, thus the net must translate
to the ball’s impact point. After the ball is caught, there are no longer any
time constraints to be satisfied, thus the jerk to decrease the net radius again
is chosen small. This is why the catching maneuver does not end shortly
after the catch, but about 1.5 s later. Notice that the scaling of the position
axis is not the same for the different coordinates.

[6] B. Hove and J.-J. E. Slotine, “Experiments in robotic catching,” in
American Control Conference, june 1991, pp. 380 –386.

[7] B. Bauml, T. Wimbock, and G. Hirzinger, “Kinematically optimal
catching a flying ball with a hand-arm-system,” in Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on, oct.
2010, pp. 2592 –2599.

[8] G. Batz, A. Yaqub, H. Wu, K. Kuhnlenz, D. Wollherr, and M. Buss,
“Dynamic manipulation: Nonprehensile ball catching,” in Control
Automation (MED), 2010 18th Mediterranean Conference on, june
2010, pp. 365 –370.

[9] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predic-
tive control on a quadrotor: Onboard implementation and experimental
results,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on, may 2012, pp. 279 –284.

[10] R. Ritz, M. W. Müller, M. Hehn, and R. D’Andrea, “Cooperative
quadrocopter ball throwing and catching: Online appendix,” oct.
2012. [Online]. Available: www.idsc.ethz.ch/people/staff/mueller-
m/CooperativeQuadrocopterBallThrowingAndCatchingAppendix.pdf

[11] H. P. Geering, Optimal Control with Engineering Applications.
Springer, 2007.

[12] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” in IFAC World Congress, aug. 2011.

[13] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I,
3rd Ed. Athena Scientific, 2005.

4978

