
Distributed Control of Antenna Array

with Formation of UAVs

Stefania Tonetti ∗ Markus Hehn ∗∗ Sergei Lupashin ∗∗

Raffaello D’Andrea ∗∗

∗ Department of Aerospace Engineering, Politecnico di Milano, Milano,
Italy (e-mail: tonetti@aero.polimi.it).

∗∗ Institute for Dynamic Systems and Control (IDSC), ETH Zurich,
Zurich, Switzerland (e-mail: {hehnm,sergeil,rdandrea}@ethz.ch)

Abstract: This paper studies the feasibility and the advantages of a distributed control strategy
for a linear end-fire antenna array formation with UAVs. We first analyze the sensitivity of
different interaction topologies to a low frequency sinusoidal disturbance affecting just one single
vehicle, for antenna array sizes of up to 30 elements. The ETH Zurich Flying Machine Arena
(FMA) is used as a test case. Then we consider a more realistic case of wind gust acting on all of
the antennas. We show that under such conditions the simplified analysis does well at predicting
the formation behavior under different distributed and decentralized control strategies.

1. INTRODUCTION

In recent years there has been an increasing interest in
small Unmanned Aerial Vehicles (UAVs) for numerous
applications (see for example Chandler et al. [2002], Beard
and McLain [2004] and the references therein). UAVs can
cover wide spaces and they are popular in military, surveil-
lance and exploration missions, such as Synthetic Aperture
Radar (Stiles et al. [2002]), environmental monitoring,
pollution control and drag reduction via close formation
flight (Wolfe et al. [1996]).

The idea of using a cluster of UAVs as a phased antenna
array offers significant potential advantages and remains
a popular research topic. Each vehicle in the formation
carries a single-element antenna such that together they
form an array. Antenna arrays are widely used in com-
munication systems because they have several advantages
over a single-element antenna: they increase mobility; they
facilitate changing frequencies and direction by reconfigu-
ration; and they can provide higher directivity, higher an-
tenna gain and higher signal to noise ratio on the received
signal. One drawback of the UAV antenna array is that
the antennas are not rigidly connected; the array is thus
sensitive to disturbances caused by wind around the air-
craft. Position errors become a significant problem to solve
and require an effective control strategy. Control problems
associated with autonomous vehicles in formation flight
have been investigated: in Wolfe et al. [1996] decentralized
controllers are proposed for a formation of five aircraft; in
Breheny et al. [2003] the feasibility of using several UAVs
to form a phased antenna array is analyzed; in Chandra
et al. [2008] linear controllers are proposed to correct for
vehicle position errors. In all the works mentioned above
the control is totally decentralized, meaning each agent
is controlled by a local controller Ci which accesses only
the state of agent i with no information exchange among
the other vehicles. However, for the purpose of formation
control, a decentralized control cannot guarantee precise
relative distances among the agents. A new kind of control

strategy is therefor needed for multi-agent systems, and
distributed control techniques are an attractive option. In
a distributed control architecture each agent is equipped
with a local controller Ci which receives information not
only on the state of agent i but also on the state of a
subset of other vehicles in the formation. Applications of
coordinated control of multiple vehicles has been adressed
in many fields and some examples can be found in Kapilal
et al. [1999] for microsatellite clusters, in Bender [2002] for
automated traffic systems and in Feddema et al. [2002] for
mobile robotics.

The main contribution of this paper is to show the feasibil-
ity of a distributed control strategy for an antenna array
formation with UAVs. We consider a given antenna array
design. We control each vehicle’s position using a feedback
law with the input consisting of the vehicle’s individual
state plus any available states of the neighbors. We show
that in the presence of disturbances, a distributed control
strategy can ensure better relative position control than
a decentralized one, leading to higher antenna directivity.
Extending the results in Tonetti and Murray [2010] on
limits in performance for multi-agent systems, different
interconnection topologies are studied.

The paper is organized as follows. In Section 2 we sum-
marize principal concepts on antenna arrays and graph
theory. In Section 3 we propose the quadrocopter and
distributed control models. We report simulation and real-
world results in Section 4, and present our conclusions in
Section 5.

2. PRELIMINARIES

2.1 Antenna Array Theory

In this section we present a brief introduction to antenna
array theory. For a more detailed treatment we refer the
reader to Balanis [1997].



An antenna is defined as a device that is able to receive or
transmit electromagnetic energy. An antenna may consist
of one or more components. A single-element antenna’s
performance is too limited for some applications. A set
of discrete elements, called an antenna array can be
used to improve the technical characteristics of a single-
element antenna. An antenna array is defined as multiple
antennas arranged in space and connected electrically
with controlled amplitude I and phase β to produce a
desired directional (higher gain) pattern via constructive
interference.

The performance of antennas is characterized by many
specific parameters and indices, including: beamwidth,
efficiency, side lobe level, null constraints and directivity.
We focus mainly on directivity. The directivity D of an
antenna in a given direction (θ, φ) is defined as the ratio
of the radiation intensity in the above-mentioned direction
to the average radiation intensity and for N point sources
can be expressed as

D(θ, φ) =
E2(θ, φ)

N∑

n=1

I2n

, (1)

where θ and φ are the polar and azimuthal angles in spher-
ical polar coordinates, respectively (Fig. 1), E(θ, φ) is the
magnitude of the electric field and In is the amplitude of
the nth source. The magnitude of the electric field E(θ, φ)

Fig. 1. Geometry of an antenna array

of N isotropic point sources with the same configuration
is proportional to

E(θ, φ) ∝

∣∣∣∣∣

N∑

n=1

Ine
j(2πxn cos ξn+βn)

∣∣∣∣∣ , (2)

where βn is the phase of the nth source, xn is the distance
of the nth source point from the origin measured in
wavelengths and

cos ξn = sin θ sin θn cos(φ− φn) + cos θ cos θn. (3)

The directivity is a measure of the concentration of the
radiated power in a particular direction and therefore, in
order to ensure good performance, the antenna directivity
should be as large as possible in the direction of the
receiver.

2.2 Graph Theory

In this section we summarize some of the key concepts from
graph theory that are used in the paper. A more detailed
presentation of graph theory can be found in Tutte [2005].

A directed graph G is a set of nodes V and a set of arcs
A ⊂ V 2 whose elements a = (u, v) ∈ A characterize

the relation between distinct pairs of nodes u, v ∈ V . A
graph is undirected if for every arc a = (u, v) ∈ A there
exists a = (v, u) ∈ A. For an arc (u, v) we call u the
tail and v the head. The in(out) degree of a node v is
the number of arcs with v as its head (tail). A directed
path in a graph is a sequence of nodes such that from
each of its nodes there is an arc to the next node in the
sequence. A directed graph is ”strongly connected” if there
is a directed path from each node in the graph to every
other node. A complete directed graph is a graph where
each pair of nodes has an arc connecting them. A simple
cycle is a closed path that is self-avoiding (does not revisit
nodes, other than the first). A (un)directed cycle graph is
an undirected graph that consists of a single (un)directed
cycle which visits each node exactly once. The structure of
a graph can be described in matrix form. The normalized
Laplacian matrix L of a directed graph G is a square matrix
of size |V |, defined by Lij = 1 if i = j, Lij = 1/di if
(i, j) ∈ A, where di is the outdegree of the ith vertex,
Lij = 0 otherwise.

3. DISTRIBUTED CONTROL DESIGN

3.1 Quadrocopter Model

We consider a 2D model of a quadrocopter moving in the
xz-plane (Fig. 2). Out-of-plane dynamics are decoupled

Fig. 2. Simplified 2D model of a quadrocopter and coordi-
nate system

and stabilized separately. The model is:

ẍ(t) = f(t) sin θ(t)
z̈(t) = f(t) cos θ(t)− g

θ̇(t) = u(t),
(4)

where f(t) is the collective normalized thrust in m/s2, θ(t)
is the pitch angle, g is the gravitational acceleration and
u(t) is the pitch rate in rad/s.

Position control keeps the quadrocopter over a desired
point. The actual commands that are sent to the vehicle
are angle rates and collective normalized thrust. Because of
the very fast response time to variations in the rotational
rate, the pitch rate is assumed as control input ignoring
dynamics and delay. The quadrocopter’s entire state is
assumed to be known thorough an estimator. Assuming
constant height zd, horizontal motion is achieved by pitch-
ing the quadrocopter in response to a deviation from the xd

reference. We assume near-hover operation, which implies
small pitch angles. It is therefore possible to linearize the
dynamics about the hover operating point, with only small
linearization errors. The linear approximation about hover
for the x-dynamics results in a triple integrator:

...
x (t) = gθ̇(t) = gu(t), (5)



and it relates the position x(t) to the angle rate input u(t).
The feedback term to correct for errors is

u(t) = k2(ẍd(t)− ẍ(t))+k1(ẋd(t)− ẋ(t))+k0(xd(t)−x(t)),

where k2, k1 and k0 are control parameters acting on the
acceleration, velocity and position errors, respectively. In
order not to have derivatives as control inputs, we consider
an inner loop to stabilize velocity and acceleration, and an
outer loop to stabilize position, as shown in Fig. 3, where

Fig. 3. Block diagram of quadrocopter’s x-dynamics feed-
back control

P (s) = g/s3, K(s) = k1s+ k2s
2 and C(s) = k0. With this

scheme the transfer function from reference r to output x
is

L(s) = k0/(s
3 + k2s

2 + k1s), (6)

and the sensitivity transfer function from reference r to
error e is

S(s) =
s3 + k2s

2 + k1s

s3 + k2s2 + k1s+ k0
. (7)

Choosing as control parameters k0 = 1.90 m−1s−1, k1 =
1.81 m−1, k2 = 0.56 s m−1, at low frequency L(s)
has large magnitude while |S(s)| is near zero, leading to
good load disturbance rejection and reference tracking. At
high frequency the loop gain is small to avoid amplifying
measurement noise. The system cut-off frequency is ωc =
1.05. The sensitivity function’s peak value is 1.38. The
controller stabilizes the quadrocopter’s dynamics with gain
margin of 5.3 and 70◦ of phase margin. Our model is
a linear approximation and the real system is affected
by delays on sending commands. A more realistic model
should at least include this latency, with a realistic value
of τ = 40 ms. However the system has a delay margin of
1.2 s and therefore the latency can be ignored.

3.2 Distributed Control

Since in a vehicle-based antenna array the elements are not
attached to a rigid structure (which would ensure nearly
perfect positioning), a precise and robust control scheme is
needed to correct for deviations from the ideal position due
to perturbations, such as wind. Good relative positioning
is important in order to maximize directivity in a desired
direction.

For simplicity in design and fabrication, the elements of
an array are assumed to be identical and parallel. In
this paper we consider linear end-fire arrays of identical
elements. That means antenna elements are arranged in a
straight line, the receiver is along the direction of this line
and the direction of the main lobe maximum is within
the plane containing the antenna. Specifically, we deal
with a phased array, i.e., an array of identical elements
fed with current sources of identical amplitude, but which
achieves a given pattern by changing the phase of the
individual array elements βn. Phased arrays can be used
to steer the main beam of the antenna without physically

moving the antenna. It must be stressed, however, that
phase correction works well only if position errors are small
because the correction can change the relationship between
element current and radiated power. Another important
characteristic is the width of the beam, which depends
more on the array formation than on the phase. In a
given beam, width is dependent on the spacing between
the elements. Therefore we focus mainly on keeping the
desired formation, in order to reduce as much as possible
the phase shifting correction needed for inevitable position
errors.

Consider a linear end-fire array of N isotropic sources
placed along the x-axis at distances x1 < x2 < . . . <
xN . It can be proved that deviations from the nominal
position in y and z are quadratic or higher order errors
in the expression of the directivity because motion in
these directions is perpendicular to the receiver direction
(Chandra et al. [2008]). Therefore they can be controlled
in a decentralized way, while deviations in x, i.e. the
relative distance between vehicles on a straight line, are
controlled through a distributed approach. We consider
the multi-agent feedback system in Fig. 4, where the
normalized Laplacian matrix L represents the interaction

topology; P̂ (s), Ĉ(s) and K̂(s) represent matrices with
P (s), C(s) and K(s) repeated N times along the diagonal,
respectively; r ∈ RN is the vector of the reference signals
of each agent; e ∈ RN are the errors between r and the
process outputs x ∈ RN ; u ∈ RN is the control signal
vector; d ∈ RN is the disturbance acting on each vehicle.
From the point of view of formation stability, it is worth

Fig. 4. Block diagram of the antenna array feedback
control along x

noting that the Nyquist plot of the open loop transfer
function lies entirely in the half plane x > −0.5. This is
important because all the relative formation critical points
lie in the half plane x ≤ −0.5 (Fax and Murray [2004])
and therefore the relative formation dynamics are stable
for every possible interaction topology.

4. SIMULATION AND EXPERIMENTAL RESULTS

4.1 Model Validation

In this section a validation of the multi-agent feedback
control model presented in Section 3 is given.

The ETH Zurich Flying Machine Arena (FMA) is an
experimental platform for validating theoretical advances
in control of small flying vehicles. The overall organization
of the system is similar to How et al. [2008]. The arena
of 10m×10m×10m is equipped with a 8-camera Vicon
motion capture system to achieve marker localization
at 200 Hz with millimeter accuracy. Each quadrocopter
carries a unique arrangement of three such markers so that



the Vicon system can determine each vehicle’s position
and attitude at each frame with a latency of about 20
ms. For a more detailed description of the platform the
reader is referred to Lupashin et al. [2010], Schöllig et al.
[2010], Hehn and D’Andrea [2011]. The flying vehicles
currently used in the Arena are highly modified Ascending
Technologies X3D ‘Hummingbird’ quadrocopters.

For the purpose of this paper, all the vehicles’ pose data
are received by the same computer, which computationally
simulates the distributed control. The model validation is
performed with 3 quadrocopters controlled with a leader-
follower topology depicted in Fig. 5, where vehicle 1 is
the leader, while vehicles 2 and 3 are followers. Each
follower can sense only the agent in front of it. The nominal

(a) Experiment

1 2 3

(b) Model

Fig. 5. Leader-Follower topology

positions are x1 = 0 m, x2 = 1 m and x3 = 2 m.
A sinusoidal movement with amplitude A = 0.2 m and
frequency ω = 0.1 rad/s is commanded to the leader and
the followers adjust their own position in order to keep the
desired relative distance of 1 m with respect to the vehicle
in front. The comparison between model and reality (see
Fig. 6) shows that, even if the model is linear and it
does not take into account measurement noise and other
disturbances due to environment, the real system behavior
is predicted with reasonable accuracy, with position errors
of at most 3% of the distance between two vehicles. From
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Fig. 6. Time history of the x errors for the three quadrotors

now on all the results will be produced in simulation using
the validated linear multi-agent feedback control model
presented in Section 3.

4.2 Antenna Array Objective Function

Suppose the nominal design of the formation to be given,
and 0 = x1 < x2 < . . . < xN to be the ideal positions

within the array with respect to the formation origin,
arbitrarily chosen as the first vehicle in the formation. Let
x

′

n (n = 1, . . . , N) be the measured relative positions of the

vehicles with respect to the formation origin, with x
′

1 = 0
by construction. In order to maximize directivity, for the
phase nominal design we choose βn = −2πxn cosφ0. Sup-
pose we want to maximize the directivity in the direction
θ = π

2 , φ0 = 0, the magnitude of the electric field expressed
in (2) becomes

E
(π
2
, 0
)
∝

∣∣∣∣∣

N∑

n=1

Ine
j2πδn

∣∣∣∣∣ , (8)

where δn = x
′

n − xn is the position error in wavelength
of the nth element with respect to the formation origin.
Substituting equation (8) in the expression of directivity
(1) and assuming antennas are fed with the same current
In = I ∀n = 1, · · · , N , we state the objective function in
presence of relative position errors as follows:

D
(π
2
, 0
)
=

1

N



(

N∑

n=1

cos(2πδn)

)2
+

(
N∑

n=1

sin(2πδn)

)2
 . (9)

The objective function defined above takes its maximum
value of N when all the errors are equal to zero, and
it is used to evaluate performances of different control
strategies.

4.3 Sensitivity to a Single-Agent Disturbance

In order to simplify the analysis, this section presents a
comparison on minimum directivity achievable applying
decentralized and distributed control strategy for station-
keeping in presence of a disturbance acting on a single
agent. Starting from results obtained in Tonetti and Mur-
ray [2010] it is possible to predict the array behavior in the
presence of a low frequency sinusoidal disturbance acting
on one agent by simply evaluating the appropriate network
sensitivity functions at that frequency.

A sinusoidal perturbation along x with frequency ωd ≪ ωc

is introduced in one element. The output position of the
moving quadrocopter results in a sinusoidal movement
with amplitude A. This is considered the reference to
follow for all the other vehicles, in order to keep the desired
relative distances. Referring to Breheny et al. [2003],
assume each quadrocopter is equipped with an antenna
operating at 150 MHz, with wavelength of approximately
2 m at that frequency. The nominal relative distance
between neighboring elements is assumed to be uniform
and equal to 0.5 wavelengths.

If a decentralized controller is used, i.e., each agent adjusts
its position only according to its own state, the agent
perturbed moves sinusoidally with x = A sin(ωdt), while
the others simply keep their absolute position. What we
are looking for is a strongly connected topology, meaning
that each vehicle can sense every other vehicle because
every pair of nodes is connected by a directed path.
From Tonetti and Murray [2010] it is known that there
are limitations on multi-agent systems performance. If a
strongly connected graph is used and the task is to keep as
small as possible all the relative distances, the best we can
achieve is a low frequency disturbance attenuation factor
of 1/N for all the agents, with topologies that equally



Table 1. Graph topologies and relative Lapla-
cian matrices used to control the linear end-fire

array

Topology Laplacian matrix

1

2 3

4

6 5

Lij =

{
1 if i = j

−1 if (i, j) ∈ A

0 otherwise

Directed cycle

1

2 3

4

6 5

Lij =





1 if i = j

−
1

2
if (i, j) ∈ A

0 otherwise

Undirected cycle

1

2 3

4

6 5

Lij =

{
1 if i = j

−
1

N − 1
otherwise

Complete

distribute cycles on the nodes. Notice that δn assumes
in general different meaning from the error en in Fig. 4:
δn = x

′

n−xn, while en = L(xn−x
′

n). The latter depends on
the interaction topology through the Laplacian matrix L.
However, the two errors can be easily related through some
algebraic computations. Examples for a 6-element antenna
array of the interconnection topologies and corresponding
normalized Laplacian matrices used in the simulation are
listen in Table 1. If the control is decentralized L = I(N).
It should be stressed that diagrams in Table 1 capture
the interconnection topology, while the vehicle formation
is arranged in a straight line to form a linear end-fire array.
Since the disturbance is sinusoidal, directivity also assumes
periodic values in time. To evaluate performance, only the
minimum directivity value along

(
π
2 , 0
)
is considered, and

in Fig. 7 it is shown for different array sizes, normalized
to the number of agents. From Fig. 7 it is clear that for
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Fig. 7. Minimum guaranteed directivity: comparison bet-
ween different control strategies

N<8 a directed cycle is the best choice, while forN≥8 the
complete directed graph ensures higher directivity than a
decentralized one. This is explained looking at the relative
errors δn for the two topologies: in a directed cycle the
relative error depends on the length of the path from
the quadrocopter n to the perturbed agent δn = An/N ,
while a complete graph ensures the same relative error
equal to δn = A(N − 1)/N , for all the agents. However,
as the number of antennas increases, the behavior of the
distributed control with complete graph topology tends

asymptotically to the decentralized one. For example,
with 20 agents the improvement in directivity using a
distributed strategy compared to a decentralized one is
about 0.6% and it decreases to 0.3% for 30 antennas. This
is because of how L is defined: when N grows, the control
weight on the other agents position becomes smaller and
smaller, tending to zero for N going to infinity, and
therefore quadrocopters tend to behave like a single agent.
As expected in the case of decentralized control, single
agent error becomes less significant and the normalized
directivity becomes higher as the number of antennas is
increased. An undirected cycle topology never guarantees
a good performance.

4.4 Sensitivity to Wind Gusts

In this section we generalize results obtained previously to
a more realistic case of disturbance caused by wind gusts.

Wind is the main source of antenna disturbance. The total
wind velocity is a combination of a mean velocity and a
gust velocity. The gust component can be modeled as a
random process with zero mean and a spectrum called the
Davenport spectrum (Simiu and Scanlan [1978]). Daven-
port filter is used to shape white noise w of unit standard
deviation into wind gusts. The filter transfer functionH(s)
is of fourth order and was obtained in Gawronski et al.
[1994].

In our model the wind gusts are applied at the rate
input, but the output of Davenport filter is a velocity.
Therefore wind gust has to be appropriately filtered with
filter F (s) = (kts)/kd to produce a rate that is added
to the rate input of the antenna. First velocity gust is
scaled with gain kt to obtain wind torque and next the
torque is filtered to obtain a rate. Coefficients kt and kd
are torque factor and drive gain, respectively, depending
on physical characteristics of the antenna, wind direction
and velocity. We study the worst case scenario from the
directivity point of view, where wind gusts are directed
along the x axis. We consider wind gust signals w̃ =
F (s)H(s)w colored in time because filtered, but spatially
white because uncorrelated from one agent to the other.
Disturbance is added to the control law input u and we
compute the normalized directivity obtained with different
control strategies. The white noise vector w generated
for the simulation is the same for all the topologies, in
order to better compare results. According to Fig. 7,
for 3 antennas we expect single cycle to guarantee the
highest directivity and complete graph topology to behave
well, while the decentralized control to be the worst. In
Fig. 8 we can see that the simplified model in section 4.3
predicts the antenna array behavior with good accuracy.
For an antenna array of 16 elements we expect the directed
cycle to be the worst choice, while the complete graph
and decentralized control to guarantee almost the same
directivity, with the complete one to be a little better (see
Fig. 9).

5. CONCLUSION

In this paper we have shown that, in the case of for-
mation quadrocopters, an improvement in antenna array
directivity can be achieved by applying a station keeping
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in presence of wind gusts
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Fig. 9. Normalized directivity for 16 elements antenna
array in presence of wind gusts

distributed control, instead of a decentralized one. We have
proposed a simplified method to evaluate array perfor-
mance that satisfactorily predicts the formation behavior
even in presence of wind gusts. Even if distributed control
always ensures the higher directivity, we can in general
conclude that a complete graph topology is indicated if
the elements forming the antenna array are limited to a
small number, while a decentralized control is indicated
for a high number of agents. With mid-sized groups, one
must choose between loss in directivity caused by decen-
tralized control, and communication and computational
effort needed from the distributed strategy.

The distributed control strategy considered throughout
this paper does not take into account errors in absolute
position. It is, however, important to keep the formation
precisely oriented towards the receiver. In order to over-
come this issue a mixed absolute/relative control should
be implemented, where knowledge on global coordinates
is available to the entire formation. Another problem not
addressed in our work is the single element orientation
error. Directivity is influenced only by relative position
errors if all the elements in the formation are identically
oriented. Wind gusts and the control actions change an-
tennas’ attitude, causing a decreasing in the antenna array
directivity. In the present work the information exchange
between UAVs is computationally simulated. In a real
world implementation the onboard sensors will provide less
accurate position measurements, but we expect that re-
duction in system performance will affect both distributed
and decentralized control.
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