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Abstract— A numerical method for computing quadrocopter
maneuvers between two states is presented. Computed ma-
neuvers satisfy Pontryagin’s minimum principle with respect
to time-optimality. First, in order to obtain the structure of
time-optimal maneuvers, we apply the minimum principle to
a first-principles, two-dimensional quadrotor model. Then we
present a numerical algorithm that enables the computation of
maneuvers for arbitrary initial and final states. The developed
method is used to compute a set of maneuvers, which are
discussed and demonstrated experimentally in the ETH Zurich
Flying Machine Arena testbed.

I. INTRODUCTION

The quadrocopter is a popular miniature aerial vehicle
platform. A major reason for this popularity is the excep-
tional agility that these vehicles provide. For the rotational
degrees of freedom, this is due to the off-center mounting
of the propellers, combined with low rotational inertia.
Translational dynamics are also typically fast, due to high
thrust-to-weight ratios when not carrying a payload.

From a controls perspective, most early research on
quadrotor dynamics focused on near-hover operation (see,
for example, [1], and references therein). More dynamic
maneuvers have been performed in recent years, including
fast translations [2] and flips [3]. Algorithms that gener-
ate trajectories from a class of motion primitives (lines,
polynomials, or splines) and which respect the dynamic
constraints of quadrocopters have been introduced by several
authors [4]–[6]. Dynamic feasibility is enforced by adapting
the trajectory speed such that feasibility constraints are not
violated.

A more specific trajectory generation problem is the
generation of time-optimal trajectories between two states. A
method using nonlinear programming and genetic algorithms
has been presented [7]. It numerically minimizes the terminal
time of the transition between two states, assuming piecewise
constant control inputs.

In this paper, we present an algorithm that calculates
control input and state trajectories between two states. We
seek to find time-optimal trajectories and leverage Pontrya-
gin’s minimum principle to determine the structure of such
trajectories. The calculated trajectories fulfill the minimum
principle, making them strong candidates for optimality.
Fig. 1 shows sample maneuvers that have been computed
using the algorithm introduced in this paper.

The calculation of time-optimal maneuvers offers insight
into the dynamical capabilities of quadrotor vehicles. While
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Fig. 1. Illustration of maneuvers for a purely vertical displacement of
2 m, 4 m, and 6 m. The maneuvers satisfy the minimum principle and for
each maneuver, a quadrocopter is plotted every 0.03 s or every 0.01 s in the
zoom box, respectively. The model parameters are based on the ETH Zurich
Flying Machine Arena vehicles.

this algorithm is too slow to be used in real-time trajectory
generation settings, it offers a valuable reference to bench-
mark other trajectory generation tools and controllers.

The remainder of this paper is structured as follows:
In Section II, the first-principles dynamic model of the
quadrocopter is presented. In Section III, the structure of
time-optimal quadrotor control trajectories is derived. In
Section IV, we present the algorithms used to compute
solutions to the minimum principle for given initial and final
states. Section V presents resulting maneuvers for a selection
of translations. Section VI presents experimental results



demonstrating the validity of the calculated trajectories, and
Section VII provides a conclusion.

II. QUADROCOPTER MODEL

In this section, a two-dimensional model of the quadro-
copter is presented and a non-dimensionalizing coordinate
transformation is applied, which allows to describe the
quadrocopter using only two parameters.

The two-dimensional quadrocopter model has three de-
grees of freedom: the horizontal position x, the vertical
position z, and the pitch angle θ, as shown in Fig. 2. We
assume that the angular velocity θ̇ can be set directly without
dynamics and delay. This is motivated by the very high
angular accelerations that quadrocopters can reach (typically
on the order of several hundred rad/s2), while the angular
velocity is usually limited by the gyroscopic sensors used
for feedback control on the vehicle [3]. As demonstrated
by experimental results shown in Section VI, the model
mismatch caused by this assumption is small, and it leads to
tractable derivations in the following chapters.

The quadrocopter is controlled by two inputs: the total
thrust force FT and the pitch rate ω. Both controls are subject
to saturation:

FT ≤ FT ≤ FT , |ω| ≤ ω. (1)

Because commonly available motor drivers do not allow the
direction of rotation to reverse mid-flight, and because the
propellers are of fixed-pitch type, we assume that the thrust
is always positive, i.e. FT > 0. The equations of motion are

ẍ =
FT

m
sin θ, z̈ =

FT

m
cos θ − g, θ̇ = ω, (2)

where g denotes the gravitational acceleration and m the
mass of the quadrocopter.

To describe the system using as few parameters as possi-
ble, we introduce the non-dimensionalizing coordinate trans-
formation to unit gravity and unit allowable rotational rate:

t̂ = ωt, x̂ = ω2x/g, ẑ = ω2z/g. (3)

This transformation is applied to (2). We define the
state vector to be x = (x̂, ˙̂x, ẑ, ˙̂z, θ), and the control vec-
tor as u = (uR, uT ) = (ω/ω, FT /(mg)). The dimensionless

Fig. 2. Coordinate system and control inputs of the two-dimensional
quadrocopter model.

quadrotor dynamics yield

ẋ =


˙̂x
¨̂x
˙̂z
¨̂z

θ̇

 = f(x,u) =


˙̂x

uT sin θ
˙̂z

uT cos θ − 1
uR

 . (4)

Note that the time derivative ẋ refers to the dimensionless
case ∂x/∂t̂. The transformation of the control inputs results
in

UT ≤ uT ≤ UT , |uR| ≤ 1, (5)

with UT = FT /(mg) and UT = FT /(mg). The transformed
system dynamics are characterized by only two parameters,
UT and UT . In the following, the hat notation is dropped to
increase readability. It is understood that all calculations are
done in the dimensionless coordinate system.

III. MINIMUM PRINCIPLE FOR TIME-OPTIMAL
QUADROCOPTER CONTROL

This section shows how Pontryagin’s minimum principle
is applied to time-optimal quadrocopter control. It follows
that the thrust input is bang-bang, and the rotational control
is bang-singular, meaning that the control input is always
at full positive or negative saturation, except during singular
arcs.

We seek to compute time-optimal maneuvers that bring
the quadrocopter from a given initial state x0 to a given
final state xT . An optimal maneuver is characterized by its
state trajectory x∗(t), t ∈ [0, T ], or the corresponding control
inputs u∗(t), t ∈ [0, T ]. The time-optimal maneuver for given
x0 and xT is the solution to optimization problem

minimize T
subject to ẋ = f(x,u),

x(0) = x0,
x(T ) = xT ,
u ∈ U ∀t ∈ [0, T ],

(6)

where U denotes the set of all attainable control vectors.
This problem can be solved using Pontryagin’s minimum
principle, which provides necessary conditions for optimal-
ity [8], [9]. With a cost function equal to 1, i.e. g(x,u) = 1,
the Hamiltonian for the problem yields

H(x,u,p) = g(x,u) + pT f(x,u)
= 1 + p1ẋ+ p2uT sin θ

+p3ż + p4(uT cos θ − 1) + p5uR
= 0,

(7)

where pi denotes the elements of the costate vector p. Note
that along the optimal solution the Hamiltonian is zero for
all times, i.e. H ≡ 0, since the terminal time T is free [8].
Applying the adjoint equation

ṗ = −∇xH(x∗,u∗,p), (8)

the first four costates result in
ṗ1 = 0, p1 = c1,
ṗ2 = −p1, p2 = c2 − c1t,
ṗ3 = 0, p3 = c3,
ṗ4 = −p3, p4 = c4 − c3t,

(9)



with the unknown constants c = (c1, c2, c3, c4). For the
remaining element p5, the adjoint equation (8) gives

ṗ5 = −p2u∗T cos θ∗ + p4u
∗
T sin θ∗, (10)

and p5 cannot be expressed explicitly because it depends on
the control input u∗T , the trajectory of which is not known a
priori.

A. Optimal Control Inputs

The minimum principle states that the optimal control in-
put trajectory minimizes the Hamiltonian (7) over all possible
values of u. Since the two control inputs do not appear
in the same summand, the Hamiltonian can be minimized
separately for uR and uT :

1) Optimal Control Input u∗R: For the rotational control
input uR, minimizing (7) results in

u∗R = argmin
uR∈[−1,+1]

{p5uR}. (11)

If p5 changes sign, then u∗R switches from −1 to +1 or vice
versa. We define

ΦR = p5 (12)

as the switching function of u∗R. If ΦR is zero for a
nontrivial interval of time, then the minimum condition (11)
is insufficient to determine u∗R. In these intervals, which are
called singular arcs, u∗R is determined using the condition
that ΦR remains zero. It follows that Φ̇R vanishes, which
results in the condition

Φ̇R = −p2u∗T cos θ∗ + p4u
∗
T sin θ∗ = 0. (13)

Solving for θ∗ using u∗T > 0 yields

θ∗ = arctan

(
p2
p4

)
= arctan

(
c2 − c1t
c4 − c3t

)
. (14)

Differentiating (14) with respect to time gives the trajectory
of the control input u∗R = θ̇∗ in a singular arc:

u∗R,sing =
c2c3 − c1c4

(c21 + c23)t2 − 2(c1c2 + c3c4)t+ c22 + c24
. (15)

The rotational control input u∗R of a time-optimal maneu-
ver of the quadrocopter can be written as

u∗R =


+1 if ΦR < 0
u∗R,sing if ΦR = 0

−1 if ΦR > 0
. (16)

This type of optimal control trajectory is referred to as bang-
bang singular control or bang-singular control [10], [11].

2) Optimal Control Input u∗T : To compute the optimal
control trajectory for the thrust input u∗T , the sum of all terms
of the Hamiltonian containing uT must be minimized:

u∗T = argmin
uT∈[UT ,UT ]

{p2uT sin θ∗ + p4uT cos θ∗}. (17)

Again, we define a switching function

ΦT = p2 sin θ∗ + p4 cos θ∗. (18)

For a singular arc to exist, ΦT must be zero for a nontrivial
interval of time. Setting ΦT to zero and solving for θ∗ yields

θ∗ = arctan

(
−p4
p2

)
= arctan

(
c3t− c4
c2 − c1t

)
. (19)

The pitch angle θ∗ is determined by the rotational control
input u∗R. It can be shown that (19) never holds for a
nontrivial interval of time, neither in a singular, nor in a
regular interval of u∗R. The input u∗T therefore does not
contain singular arcs and can be written as

u∗T =

{
UT if ΦT ≤ 0
UT if ΦT > 0

. (20)

B. Augmented System

As only the derivative Φ̇R is given, we augment the system
equations (4) with an additional state in order to represent the
switching function ΦR. We define xa = (x∗,ΦR), resulting
in the augmented system dynamics

fa(t,xa) =


ẋ∗

u∗T sin θ∗

ż∗

u∗T cos θ∗ − 1
u∗R

(c1t− c2)u∗T cos θ∗ + (c4 − c3t)u∗T sin θ∗

 .

(21)
The control inputs u∗R and u∗T are given by the control
laws (16) and (20). A quadrocopter maneuver from x0 to
xT that satisfies the minimum principle solves the boundary
value problem (BVP)

ẋa = fa(t,xa),
x∗(0) = x0,
x∗(T ) = xT .

(22)

In order to solve BVP (22), the final time T and the unknown
constants c must be determined.

This completes the derivation of the minimum principle for
time-optimal quadrocopter control given the model presented
in Section II. The rotational control input u∗R is bang-singular
with switching function (12) and singular input (15), and the
thrust input u∗T is bang-bang with switching function (18).
Finally, the augmented system dynamics are given by (21).

IV. COMPUTATION OF TIME-OPTIMAL MANEUVERS

In this section, a numerical method for computing quadro-
copter maneuvers between two arbitrary states is introduced.
The resulting maneuvers satisfy the minimum principle with
respect to time-optimality.

To solve BVP (22), we use the approach of switching
time optimization (STO), as proposed in [12]. A significant
advantage of STO for this problem is that, if the maneuver
is bang-bang without singular arcs, it does not require an
initial guess of the unknown constants c.



A. Bang-Bang Maneuvers
First, maneuvers with pure bang-bang behavior of both

control inputs are considered, meaning that it is assumed
that no singular arcs occur in u∗R. The algorithm consists of
three successive steps: 1) a bang-bang maneuver is found that
brings the quadrocopter from the initial to the desired final
state using STO: The maneuver is obtained by varying the
duration T and the times at which the control inputs switch
between their boundaries, until the quadrocopter reaches the
final state with an acceptable accuracy; 2) based on the
resulting maneuver trajectory, conditions on the constant
vector c = (c1, c2, c3, c4) for BVP (22) to be satisfied by the
maneuver are set up. These conditions are used to extract a
first guess of the unknown constants c; 3) having a good
initial guess of the maneuver duration T and of the constant
vector c, a BVP solver that computes a solution to BVP (22)
is applied. In the following, these three steps are introduced
in detail:

1) Switching Time Optimization: Due to the assumption
that the optimal solution is a bang-bang maneuver, the
control trajectory u(t) can be efficiently parameterized by
the initial control inputs u(t = 0) and the switching times
of the two control inputs, denoted by the two sets

{TuR
} = T i

uR
for i = 1, 2, . . . , NR,

{TuT
} = T j

uT
for j = 1, 2, . . . , NT .

(23)

NR and NT are the number of switches of the corresponding
control input. The principle of STO is to choose NR and
NT and to then improve an initial choice of the switching
times, until a control trajectory is found that guides the
quadrocopter from x0 to xT with an acceptable accuracy.
We measure the final state error using the scalar final state
residual function

Pres({TuR
}, {TuT

}, T ) = (x(T )− xT )TW (x(T )− xT ),
(24)

where the matrix W = diag(w1, w2, w3, w4, w5) contains
the weights of the different state errors. The final state x(T )
resulting from the chosen switching times can be obtained
by numerically integrating the system dynamics f(x,u) over
the interval [0, T ], where u is defined by the initial control
inputs u(t = 0) and the switching times {TuR

} and {TuT
}.

Note that the maneuver duration T is not known a priori and
we must find the minimum T for which Pres = 0 can be
obtained. The problem can be written as

find {TuR
}, {TuT

}, T
subject to Pres({TuR

}, {TuT
}, T ) = 0,

T ≤ {T}ach,
(25)

where {T}ach is the set of all T for which Pres = 0 is
achievable.

The solution of (25) is found by a two-step algorithm:
For an initially small, fixed maneuver duration T , the state
residual Pres is minimized by varying the switching times
{TuR

} and {TuT
}. After the minimization, T is increased

using the secant method

Ti+1 = Ti +
Ti − Ti−1

(Pres,i−1/Pres,i)− 1
, (26)

or by a constant value if the secant method does not
converge [13]. These two steps are repeated until Pres = 0
is achieved. Since the initial value of T is chosen to be too
small to complete the maneuver, and since T is successively
increased, the algorithm delivers the smallest T for which
Pres = 0 is achievable.

2) Parameter Extraction: After having found a bang-
bang trajectory that brings the quadrocopter from the initial
state x0 to the desired final state xT , it is necessary to verify
that it is a solution to BVP (22). Therefore, the constant
vector c = (c1, c2, c3, c4) must be determined, based on the
trajectories resulting from the STO. Several conditions on c
can be constructed from the control input trajectories:

a) Conditions on the Trajectory of ΦR: The switching
function ΦR has a zero-crossing when the control input uR
switches, which leads to the conditions

ΦR(T i
uR

) = 0 for i = 1, 2, . . . , NR. (27)

As shown in Section III, only the derivative Φ̇R of the
switching function is known a priori. However, once the state
trajectories are known from the STO, the condition H ≡ 0
can be used to compute ΦR.

The derivative Φ̇R is given by (21). For a trajectory that
satisfies the minimum principle, the integral of Φ̇R must
coincide with the trajectory of ΦR. Hence, for an arbitrary
interval [t1, t2] ∈ [0, T ],

ΦR(t2)− ΦR(t1) =

∫ t2

t1

Φ̇Rdt (28)

must hold, where the left side of the equation is computed
using H ≡ 0. To define conditions on c based on (28), the
maneuver interval [0, T ] is divided into NR + 1 subintervals
that are separated by the switching times {TuR

}. This choice
is beneficial with respect to the computational effort because
the switching function ΦR must vanish at the switching
times; the left side of (28) can be set to zero for all intervals,
except for the first and the last one.

b) Conditions on the Trajectory of ΦT : ΦT must vanish
at each switch of uT , hence

ΦT (T i
uT

) = 0 for i = 1, 2, . . . , NT , (29)

where {TuT
} is given by the STO.

c) Condition Matrix Equation: For the minimum prin-
ciple to be satisfied, a constant vector c that fulfills the above
conditions to an acceptable accuracy must exist. It can be
shown that all conditions are linear with respect to c. Hence,
the conditions from (27), (28), and (29) can be merged in a
linear system of equations, denoted by the matrix equation

Ac = r. (30)

Since the system is overdetermined for all maneuvers consid-
ered here, the least squares solution of (30) is computed [14],
which is given by

c∗ = (ATA)−1AT r. (31)

Then, c∗ is substituted back into (30) and the error is
checked. If the error is not close to zero, then the minimum



principle is not satisfied by the maneuver. Reasons for this
can be a wrong number of switches, or the existence of
singular arcs.

3) BVP Solver: To verify that BVP (22) is fulfilled and
to minimize numerical errors, we perform a last step, where
the BVP is solved numerically. The state residual Pres is
minimized by varying the constant vector c and the maneuver
duration T . The problem can be written as

minimize Pres(c, T )
subject to ẋa = fa(t,xa),

xa(0) = (x0,ΦR(0)).
(32)

The constants c resulting from the parameter extraction and
the maneuver duration T obtained by the STO are used
as initial values. As these initial values are close to the
exact solution, the BVP solver converges quickly. ΦR(0) can
be obtained by the condition H ≡ 0 evaluated at t = 0. If
Pres is sufficiently small after the minimization, the solution
satisfies the minimum principle.

B. Bang-Singular Maneuvers

We now consider maneuvers where uR contains singular
arcs. The algorithm is similar to the one for bang-bang
maneuvers introduced in Section IV-A. However, the steps
have to be modified to take the singular arcs into account:
The parameter extraction step is embedded into the STO,
since during the singular arcs, the trajectory of uR depends
on the constants c. The principle of STO with embedded
parameter extraction is to find a maneuver that brings the
quadrocopter to the desired final state, and in parallel, to
find a constant vector c that fulfills all conditions resulting
from the parameter extraction. Hence, for bang-singular
maneuvers, the algorithm consists of two successive steps:
1) the STO with embedded parameter extraction; and 2) the
BVP solver.

1) Switching Time Optimization with Embedded Parame-
ter Extraction: The approach of STO is again used to find a
control trajectory that brings the quadrocopter from x0 to xT .
However, for bang-singular maneuvers, uR can stay within a
singular arc for a particular duration, each time it switches.
A new set of parameters is introduced that describes the
durations of the singular arcs: We denote the duration within
the singular arc at the switching time T i

uR
as Di

s,uR
: At the

time T i
uR

the control input uR enters the singular arc, and at
time T i

uR
+Di

s,uR
the singular arc is left and uR switches to

−1 or +1. Thus, the maneuver is characterized by the sets
{TuR

}, {TuT
}, and {Ds,uR

}. Within a singular arc, uR is
given by (15) and its trajectory depends on the constants c.
The final state residual Pres is therefore also a function of
c and can be written as

Pres({TuR
}, {TuT

}, {Ds,uR
}, c, T )

= (x(T )− xT )TW (x(T )− xT ).
(33)

{Ds,uR
} and c are additional optimizing variables during

the STO. Since the dynamics are extremely sensitive to c,
a good initial guess is required. The constant vector c from
a maneuver with similar x0 and xT is therefore taken as

initial value. Since only constants c that fulfill the linear
matrix equation Ac = r from the parameter extraction are a
valid choice, we define the residual of the matrix condition
equation as

Cres({TuR
}, {TuT

}, {Ds,uR
}, c, T ) = (Ac−r)TWc(Ac−r),

(34)
where Wc is a diagonal matrix containing the weights of the
different linear conditions. For a maneuver that satisfies the
minimum principle, the condition residual Cres must vanish.
Thus, the STO problem can be written as

find {TuR
}, {TuT

}, {Ds,uR
}, c, T

subject to Pres({TuR
}, {TuT

}, {Ds,uR
}, c, T ) = 0,

Cres({TuR
}, {TuT

}, {Ds,uR
}, c, T ) = 0,

T ≤ {T}ach,
(35)

where {T}ach denotes the set of all T for which Pres = 0
and Cres = 0 is achievable.

For bang-singular maneuvers, the sum of the state and the
condition residual Pres + Cres is minimized during the STO.
For the computation of Cres, the matrix A and the vector r
are required. This means that the parameter extraction (which
is the second step in the bang-bang case and delivers A and r)
is no longer an isolated step, but needs to be called for each
evaluation of Cres within the STO minimization.

Parameter Extraction for Bang-Singular Maneuvers: For
the parameter extraction of bang-singular maneuvers, which
is needed to obtain A and r, there exist additional linear
conditions which take the requirements on the switching
functions within singular arcs into account:

a) Conditions on the Trajectory of ΦR: Within a singu-
lar arc, ΦR must stay at zero, and to take this into account,
we demand that ΦR is zero at the beginning and at the end
of the singular arcs. This leads to the conditions

ΦR(T i
uR

) = 0 for i = 1, 2, . . . , NR,
ΦR(T i

uR
+Di

s,uR
) = 0 for i = 1, 2, . . . , NR.

(36)

Note that these conditions do not imply that ΦR is zero
during the entire singular arc. It is therefore necessary to
verify the trajectory of ΦR after the STO.

As the derivative Φ̇R is known explicitly, for bang-bang
maneuvers, we demanded that the integration value of Φ̇R

between two switches is zero. For bang-singular maneuvers,
we pose similar conditions, but extra time intervals over the
singular arcs are created, to penalize constant drifts of ΦR.

Because ΦR stays at zero during the singular arcs, its
derivative Φ̇R must vanish as well. Assuming that the thrust
input uT does not switch at the edges of the singular
intervals1, Φ̇R is continuous over the border of the singular
arcs, as can be seen from (21). Consequently, the switching
function ΦR enters and leaves a singular arc tangentially.
We therefore impose the conditions that the derivative Φ̇R

is zero at the edges of every singular arc. For each singular

1The assumption that uT does not switch at the edges of the singular
arcs has not been proven. However, for all maneuvers considered here, this
condition has been fulfilled.



arc, i.e. for each Di
s,uR

> 0, two additional linear conditions
result:

Φ̇R(T i
uR

) = 0,

Φ̇R(T i
uR

+Di
s,uR

) = 0
(37)

b) Conditions on the Trajectory of ΦT : The conditions
on ΦT are the same as for bang-bang maneuvers, because
uT does not contain singular arcs.

c) Condition Matrix Equation: As in the previous case,
it can be shown that all conditions are linear with respect
to the constant vector c. Again, the linear conditions are
combined into a matrix equation to obtain A and r.

2) BVP Solver: Similar to bang-bang maneuvers, the final
step of the algorithm is reducing the errors by applying a
BVP solver. If the maneuver contains singular arcs, ΦR stays
at zero for a nontrivial interval of time. Since the system is
integrated numerically, ΦR is near zero during the singular
arcs, but does not vanish completely due to numerical
inaccuracies. Since ΦR enters and leaves the singular arcs
tangentially, defining a threshold value below which ΦR is
considered to be zero is not a straightforward task. For this
reason, the control trajectory u(t) is not determined using the
optimal control laws (i.e. based on the switching functions),
but based on the sets {TuR

}, {TuT
}, and {Ds,uR

}. To verify
that the control inputs correspond to the optimal control laws,
we plot the switching functions ΦR and ΦT after executing
the BVP solver, and check if the control laws are satisfied.
For bang-singular maneuvers, the BVP solver is very similar
to the STO. The only (but important) difference is that the
maneuver duration T is an optimization variable, too, and
not kept constant during the minimization of Pres + Cres.

V. RESULTS

In this section, resulting quadrocopter maneuvers that were
computed using the algorithms introduced in Section IV
are presented. The focus lies on maneuvers that lead to a
horizontal and vertical displacement while the quadrocopter
is at rest at the beginning and at the end of the maneuver.

Table I shows the used numerical model parameters in the
dimensional form (FT /m, FT /m, ω). The non-dimensional
parameters (UT , UT ) can easily be calculated from these
using the control input transformation (5). The model pa-
rameters are based on the ETH Zurich Flying Machine
Arena vehicles [3]. For the visualization of the computed
maneuvers, the system is transformed back to the state vari-
ables representing physical dimensions, which allows a more
intuitive interpretation. Nevertheless, all results presented
here can easily be transformed back to the more general
non-dimensional case.

TABLE I
NUMERICAL PARAMETERS OF THE QUADROCOPTER MODEL.

Parameter Value Description
FT /m 1m/s2 Minimum mass-normalized thrust
FT /m 20m/s2 Maximum mass-normalized thrust

ω 10 rad/s Maximum rotational rate

A. Horizontal Displacements

First we consider maneuvers with purely horizontal dis-
placements. We define the quadrocopter to be at rest and
at a pitch angle of zero at the beginning of the maneuver.
Without loss of generality, we assume that the initial position
of the quadrocopter is at the origin:

x0 = (x(0), ẋ(0), z(0), ż(0), θ(0)) = (0, 0, 0, 0, 0). (38)

For purely horizontal displacements, we demand that, at the
end of the maneuver, the quadrocopter is at rest again, has
zero pitch, and no overall vertical displacement:

xT = (x(T ), ẋ(T ), z(T ), ż(T ), θ(T )) = (xT , 0, 0, 0, 0).
(39)

We assume that xT is positive without loss of generality.
Maneuvers have been computed for a horizontal displace-
ment xT from 0.1 m to 15 m, with a step size of 0.1 m. In
Fig. 3, the maneuver duration T is plotted as a function of
the horizontal displacement xT . Furthermore, Fig. 3 shows
the switching times for each maneuver. For a particular
displacement xT , the maneuver starts at t = 0 s, and as time
passes, it moves in the positive direction of the t-axis. Every
time a switching line is crossed, the corresponding control
input switches to the value specified in the diagram.

For xT ≤ 1.5 m, the maneuver is bang-bang with no
singular arcs. At the beginning the quadrocopter turns at
maximum rate, and around the maximum pitch angle θ the
thrust is switched on for acceleration. Then it turns in the
negative direction to decelerate around the minimum peak
of θ, before it goes back to θ = 0. At xT = 1.6 m, two
singular arcs appear. Roughly speaking, the pitch angle is
kept at θ ≈ ±π/2 for acceleration and braking, respectively.
Because a trade-off between fast acceleration in x and
maintaining altitude in z is necessary, the pitch angle is

Fig. 3. Maneuver duration T as function of the final displacement xT for
purely horizontal maneuvers. Additionally, the switching times of uR are
drawn in the plot on the top, and the switching times of uT in the plot on
the bottom.



not exactly θ = ±π/2 within the singular arcs, and not
constant. For xT ≥ 7.9 m, the two singular arcs merge: The
quadrocopter turns smoothly to a negative θ for deceleration,
instead of a sharp turn in the middle of the maneuver. Note
also that for xT ≥ 2.4 m the thrust is always at its maximum.
Fig. 4 shows an illustration of some selected maneuvers.

B. Vertical Displacements

We now consider maneuvers for a purely vertical displace-
ment. The initial and final state are:

x0 = (0, 0, 0, 0, 0), xT = (0, 0, zT , 0, 0) (40)

Maneuvers have been computed for a displacement zT
ranging from 0.1 m to 10 m, with a step size of 0.1 m. Fig. 5
shows the maneuver duration T and the switching times as
a function of zT .

If the desired vertical displacement is small, i.e. for
zT ≤ 2.4 m, the quadrocopter is within a singular arc during
the entire maneuver. The pitch angle remains at exactly
θ = 0. The thrust is switched on at the beginning and
switched off at a time such that the quadrocopter comes to
rest due to gravity at the desired height zT . For zT ≥ 2.5 m,
it is beneficial to perform a flip and to make use of the
thrust for braking while the pitch is around θ ≈ ±π. For
zT ≥ 6.3 m, a singular arc which keeps the pitch near
θ ≈ ±π for a particular time appears, as can be seen in Fig. 5.
Thus, the flip is stopped for an interval of deceleration. Some
selected maneuvers are shown in Fig. 1.

C. General Displacements

The algorithm introduced in this paper has also been used
to compute maneuvers which lead not only to a displacement
in one direction, but to a general two-dimensional displace-
ment. The initial and final state are:

x0 = (0, 0, 0, 0, 0), xT = (xT , 0, zT , 0, 0) (41)

Since the final state of a general displacement contains two
variables (xT and zT ), the maneuver duration T cannot be
easily plotted in a two-dimensional figure. Instead, as an ex-
ample, a maneuver with a displacement of 5 m in horizontal
and vertical direction, i.e. a maneuver with xT = 5 m and
zT = 5 m, is illustrated here. Fig. 6 shows the resulting input,
state, and switching function trajectories of this example

Fig. 5. Maneuver duration T as function of the final vertical displace-
ment zT for maneuvers with no horizontal displacement. Additionally, the
switching times of uR are drawn in the plot on the top, and the switching
times of uT in the plot on the bottom. The vertical black line denotes
where the structure of the minimum principle solution changes: on the left
the solution without a flip, which is faster for small zT , and on the right
the solution where the quadrocopter performs a flip, which is faster for
large zT .

maneuver. Note that the control inputs and the switching
functions indeed fulfill the control laws (16) and (20). This
implies that the minimum principle for time-optimality is
satisfied.

VI. EXPERIMENTAL RESULTS

This section presents the experimental validation of the
numerical algorithms and resulting maneuvers introduced
in the previous chapters. We observe that the experimental
trajectories are similar to the ones computed numerically.

The experiments were carried out on quadrotor vehicles
in the ETH Zurich Flying Machine Arena. We use modified
Ascending Technologies ‘Hummingbird’ quadrocopters [15].
The vehicles are equipped with custom electronics that allow
the deployment of custom control algorithms. Trajectories

Fig. 4. Illustration of maneuvers for a purely horizontal displacement between 3 m and 15 m. The maneuvers satisfy the minimum principle and for each
maneuver, a quadrocopter is plotted every 0.02 s.



Fig. 6. Input, state, and switching function trajectories of an example
maneuver with xT = 5m and zT = 5m. In the plot of the control inputs,
the switching functions are also drawn, but note that they are scaled to fit
into the plot.

were recorded using an infrared motion tracking system.
The control input trajectories are transfered to the quadrotor
vehicle before the start of the experiment. When the vehicle
is stabilized at the initial state, the maneuver is triggered
and the vehicle executes the control input trajectories, using
only feedback from the on board gyroscopes to control its
rotational rates. The trajectory is sampled and executed at
800 Hz. In order to compensate for inaccuracies of the dy-
namical model used in this paper, a policy gradient learning
method was applied to the maneuver [3]: The maneuver was
started from the initial state, and the times of the control
input switches were refined using a policy gradient method
to achieve the desired terminal state.

Fig. 7 shows the state trajectories of a translation of 5 m
in both coordinates after the learning algorithm was applied.
This is the same maneuver as shown in Section V-C (Fig. 6).
Note that the total maneuver duration is approximately 20%
higher than the calculated duration (approximately 1.7 s
versus 1.4 s). The pitch angle trajectory θ shows inaccuracies
caused by unmodeled rotational accelerations, but the overall
characteristics of the experimental trajectory are similar to
the simulated trajectory. These results support the modeling
presented in Chapter II, and demonstrate that the maneuvers
calculated using the algorithm presented herein are realistic.
A video showing this experiment is available online at
www.idsc.ethz.ch/people/staff/hehn-m .

VII. CONCLUSION

A method that numerically computes quadrocopter maneu-
vers satisfying the minimum principle with respect to time-
optimality has been developed. The algorithm is based on a
first-principles dimensionless quadrocopter model, which is
described by two parameters. Resulting maneuvers for some

Fig. 7. Measured state trajectories of the example maneuver with
xT = 5m and zT = 5m, executed on the quadrocopter. The maneuver
is identical to the one presented in Fig. 6. Note that the state trajectories on
the real system are similar to the ones in simulation.

particular initial and final positions have been illustrated
and discussed, and the transferability to real quadrocopters
has been demonstrated in the ETH Zurich Flying Machine
Arena testbed. We expect this method to be a valuable tool
that allows performance benchmarking of other quadrocopter
controllers, and that offers insights into the structure of time-
optimal quadrocopter maneuvers.
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