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Abstract: An algorithm is presented that allows the calculation of flight trajectories for
quadrocopters. Trajectory feasibility constraints regarding the vehicle dynamics and input
constraints are derived. They are then used in the planning algorithm to guarantee the
feasibility of generated trajectories. The translational degrees of freedom of the quadrotor are
decoupled, and time-optimal trajectories are found for each degree of freedom separately. The
trajectory generation is fast enough to be performed online. Control inputs are calculated
from the generated trajectory, and used to achieve closed-loop control similar to model
predictive control. The trajectory generation and tracking performance is demonstrated in
the ETH Zurich Flying Machine Arena testbed. Experimental results show good performance,
with unmodeled aerodynamic effects causing trajectory deviations when decelerating from
high speeds. Development potential for the future is highlighted, focusing on improving the
performance and correcting for aerodynamic effects.
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1. INTRODUCTION

Due to their exceptional agility, quadrotor vehicles have
emerged as popular miniature aerial vehicle platforms.
Thanks to the off-center mounting of the propellers, ex-
traordinarily fast rotational dynamics can be achieved.
Typically high thrust-to-weight ratios allow large trans-
lational accelerations when not carrying a payload.

The controller design for near-hover operation of quadro-
tor vehicles has been covered in depth in many contribu-
tions (see, for example, How et al. [2008], and references
therein). Most discussions assume that a trajectory exists
and is to be followed. The question of the feasibility of a
given trajectory has been studied more recently. Hoffmann
et al. [2008], Cowling et al. [2007], and Bouktir et al.
[2008] present algorithms that split the planning problem
into two parts: First, trajectories containing no time in-
formation are calculated from a class of motion primitives
(lines, polynomials, or splines). The trajectory is then
parametrized in time by choosing the trajectory speed such
that dynamic feasibility constraints are enforced. Lai et al.
[2006] present a methodology using nonlinear program-
ming and genetic algorithms to minimize the transition
time between two given states.

In this paper, we develop a trajectory generation method-
ology that allows planning from any initial state to a target
position. The main objectives of the approach presented
in this paper are:

• The trajectories must be feasible under the dynamic
and input constraints of the quadrotor vehicle,

• The generated trajectories should bring the vehicle to
the target position as quickly as possible,

• The trajectory calculation must be fast enough to be
used online at update rates around 50Hz, and

• It must be possible to generate an implicit feedback
control law by replanning the trajectory at each
controller update, and applying the control inputs of
the first section of it.

This approach differs from the previous work presented
above in that we seek to develop an algorithm that
both directly incorporates the dynamic constraints of the
vehicle at the planning stage, and is fast enough to allow
real-time planning. This is achieved by conservatively
approximating the feasibility constraints, such that the
planning can be decoupled into three subproblems that
can be solved efficiently. In particular, the approach is
the following: The dynamic quadrocopter model has four
control inputs, which are subject to saturation. We use
the jerk of the three translational degrees of freedom
as planning inputs. Feasibility of planned trajectories is
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Fig. 1. The inertial coordinate system O and the vehicle
coordinate system V.



guaranteed by limiting trajectory jerk and acceleration
such that the actual control inputs do not saturate.

In Section 2, we introduce the dynamic quadrocopter
model used in the trajectory generation. Feasibility con-
straints on trajectories are derived in Section 3. In Sec-
tion 4, the planning problem is presented, simplified, and
solved. Section 5 presents the implicit feedback control law
resulting from running the trajectory generation algorithm
at each controller update. The experimental setup and
results are shown in Section 6. Conclusions are drawn in
Section 7, along with an outlook for future research.

2. DYNAMIC MODEL

The quadrocopter is described by six degrees of freedom:
the translational position (x, y, z) is measured in the
inertial coordinate system O as shown in Figure 1. The
vehicle attitude V is defined by the rotation matrix O

V
R.

The rotation matrix is defined such that, when multiplying
a vector v in the vehicle coordinate V system with it, the
same vector, described in the inertial coordinate system
O, is obtained:

Ov = O

V
R Vv (1)

2.1 Control Inputs

The control inputs of the quadrotor vehicle are the desired
rotational rates about the vehicle body axes, ωx, ωy, and
ωz, and the mass-normalized collective thrust, a, as shown
in Figure 2.

High-bandwidth controllers on the vehicle track the de-
sired rates using feedback from gyroscopes. The quadro-
copter has very low rotational inertia, and can produce
high torques due to the outward mounting of the pro-
pellers. This results in very high achievable rotational
accelerations ω̇x and ω̇y on the order of 200 rad/s2. The
vehicle has a very fast response time to changes in the
desired rotational rate (experimental results have shown
time constants on the order of 20ms for changes that do
not saturate the motors). It is therefore assumed that we
can directly control the vehicle body rates and ignore rota-
tional acceleration dynamics. Rotational accelerations ω̇z

are created by causing a drag difference between propellers
rotating in opposite directions. Achievable accelerations
are significantly lower at about 19 rad/s2. However, we will
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Fig. 2. The control inputs of the quadrocopter: The rota-
tional rates ωx, ωy, and ωz are tracked by an on-board
controller, using gyroscope feedback.

show that ωz does not greatly influence the dynamics of
the vehicle in this algorithm.

Like the vehicle body rates, it is assumed that the thrust
can be changed instantaneously. Experimental results have
shown that the true thrust dynamics are about as fast
as the rotational dynamics, with propeller spin-up being
noticeably faster than spin-down.

It is further assumed that all control inputs are subject to
saturation. The magnitude of the vehicle body rates are
limited (such limitations can be caused, for example, by
the range of the gyroscopes, or limitations of the body rate
tracking controllers). The collective thrust is limited by a
minimum and a maximum thrust

amin ≤ a ≤ amax, (2)

where amin > 0. This limitation is motivated by typical
quadrotor vehicles having propellers of fixed-pitch type,
and not being able to reverse their direction of rotation in
flight.

2.2 Equations of Motion

The translational acceleration of the vehicle is dictated by
the attitude of the vehicle and the total thrust produced
by the four propellers. The translational acceleration in
the inertial frame is

[

ẍ
ÿ
z̈

]

= O

V
R

[

0
0
a

]

+

[

0
0
−g

]

. (3)

The change of vehicle attitude is related to the rotational
control inputs through [Hughes, 1986]

O

V
Ṙ = O

V
R

[

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]

. (4)

3. FEASIBILITY CONDITIONS FOR
TRAJECTORIES

We calculate the control inputs for a given trajectory,
allowing the inspection of the effects of the control input
limitations on the feasibility of trajectories. Feasible tra-
jectories must fulfill the equations of motion (3) and (4)
and the required control inputs must not exceed allowable
values.

3.1 Control Inputs for a Given Trajectory

Let (x(t), y(t), z(t)) denote a candidate vehicle trajectory.
For notational convenience, we omit the time dependency
from here on. Taking the second derivative of the trajec-
tory and combining it with the translational equation of
motion (3), we introduce the vector f representing the
total mass-normalized forces required by the quadrotor to
follow the trajectory:

f :=

[

ẍ
ÿ
z̈

]

+

[

0
0
g

]

= O

V
R

[

0
0
a

]

. (5)

Using the two-norm (denoted by ‖·‖), the thrust a required
to follow the trajectory can be calculated:
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∥

∥

∥

∥
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O

V
R

[

0
0
a

]∥

∥

∥

∥

∥

= a , (6)

as the rotation matrix does not change the two-norm of a
vector. The direction of thrust

f̄ :=
f

‖f‖
(7)

can be seen to define the third column of the rotation
matrix by substituting f̄ back into Equation (5):

O

V
R

[

0
0
1

]

= f̄ (8)

Taking the derivative of the above equation and combining
it with Equation (4) gives two of the vehicle body rates as

functions of the current attitude and ˙̄f :
[

ωy

−ωx

0

]

= V

O
R ˙̄f . (9)

Equation (6) and the first two rows of Equation (9)
provide three equations for four unknown control inputs.
To determine the control input trajectories, a fourth
equation must be additionally specified, which can be
taken to be a user-defined constraint on ωz (ωz = 0, for
example).

3.2 Feasibility Conditions

Feasibility constraints for trajectories can now be calcu-
lated from the control input constraints:

Collective Thrust The collective thrust calculated from
Equations (5) and (6) must lie between the minimum and
maximum thrust, i.e.

amin ≤ ‖f‖ =
√

ẍ2 + ÿ2 + (z̈ + g)2 ≤ amax , (10)

Rotational Rates The actual body rate control inputs
ωx and ωy can only be computed if a constraint on ωz is
specified in addition to the trajectory. However, they can
be bounded using the unit norm property of the rotation
matrix [Bernstein, 2005] with Equation (9):

ωx,y ≤
∥

∥

∥

˙̄f
∥

∥

∥
. (11)

4. TRAJECTORY PLANNING

We seek to find a way to plan trajectories from any given
vehicle position, velocity, and attitude to a given target
position. We limit the planning to trajectories ending
with the vehicle at rest. We seek trajectories that reach
the target point as quickly as possible. Our approach is
similar to the one presented for omni-directional ground
robots in Purwin and D’Andrea [2006] and Sherback et al.
[2006], but extended to the three-dimensional case and the
dynamics of quadrotor vehicles.

The three degrees of freedom are decoupled, and time-
optimal jerk trajectories are planned for each of them
separately. The feasibility of the planned trajectories is
then checked. If it is found to be infeasible, it is replanned
with reduced jerk constraints, which eventually guarantees
feasibility.

4.1 Decoupling of the Coordinates

To simplify the three-dimensional planning problem, we
perform the planning separately for each of the coordinates
x, y, and z. The three axes are coupled in the acceleration
constraint (10) and the rotational control inputs (9). In or-
der to allow decoupling, we introduce two simplifications:

Acceleration Constraint The acceleration constraint is
decoupled by allocating a constant maximum allowable
acceleration magnitude to each coordinate separately
(ẍmax, ÿmax, z̈max). These maximum accelerations are cho-
sen such that they fulfill constraint (10):

√

ẍ2
max

+ ÿ2
max

+ (z̈max + g)2 ≤ amax , (12)

g− z̈max ≥ amin . (13)

Control Inputs In order to decouple the control inputs,
we use the jerk of the three translational degrees of
freedom as planning input

v := (
...
x ,

...
y ,

...
z ) , (14)

which is related to the actual control inputs through (9)

by explicitly calculating ˙̄f :
[

ωy

−ωx

0

]

= V

O
R

(

v

‖f‖
−

ffT v

‖f‖
3

)

. (15)

It can be seen that the feasible values of the planning
input v depend on f , making it difficult to choose allow-
able values a priori. Our approach is therefore to choose
allowable magnitudes for each element of v, and to check
the feasibility of the trajectory after solving the optimal
control problem for all degrees of freedom.

4.2 Optimal Control Problem

Without loss of generality, we assume that the target
position is the origin. As the planning is identical for all
coordinates, we present it here on the example of the x-
coordinate. Let s = (s1, s2, s3) = (x, ẋ, ẍ) be the state.
The time-optimal planning problem can then be stated as:
Find the planning input u∗ minimizing the final time tf

u∗ = argmin tf (16)

subject to the system dynamics

ṡ1 = s2 (17)

ṡ2 = s3 (18)

ṡ3 = u , (19)

the initial and final conditions

s(t = 0) = s0 (20)

s(t = tf ) = 0 (21)

and the state and input constraints

|u| ≤ umax (22)

|s3| ≤ ẍmax . (23)

We will later iterate over umax to give a feasible trajectory.

4.3 Necessary Optimality Conditions

We use Pontryagin’s minimum principle (see, for example,
Bertsekas [2005]) to derive necessary conditions for opti-
mal input trajectories. The methodology we use to handle
state constraints is the direct adjoining approach [Hartl
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Fig. 3. Characteristic trajectory of the third adjoint vari-
able λ3 (top), and the optimal control input u∗ (bot-
tom).

et al., 1995], in which the augmented Hamiltonian function
is defined by

H(s, u, λ, η) = λ1s2 + λ2s3 + λ3u

+ η1 (ẍmax + s3) + η2 (ẍmax − s3) ,
(24)

where λ are the adjoint variables and η are state constraint
multipliers that fulfill

η ≥ 0 (25)

η1 = 0 if s3 > −ẍmax (26)

η2 = 0 if s3 < ẍmax . (27)

The adjoint variables must fulfill

λ̇ = −∇sH(s, u, λ, η), (28)

which results in

λ̇1 = 0 (29)

λ̇2 = λ1 (30)

λ̇3 = λ2 + η1 − η2. (31)

The optimal control u∗ is the control input that minimizes
the Hamiltonian function:

u∗ = argminH(s, u, λ, η) (32)

= argminλ3u. (33)

Maurer [1977] proves in Corallary 5.2 (ii) that, for prob-
lems of this form, the adjoint variables λ are continuous.
Furthermore, λ3 = 0 must hold when a state constraint is
active. The optimal control consists of interior arcs and
boundary arcs. On interior arcs, η1 = η2 = 0, λ3 6= 0
and u∗ = ±umax. On boundary arcs, s3 = ±ẍmax and it
follows that λ3 = 0 and u∗ = 0. The trajectory of λ3 must
be composed of parabolic shapes according to Equation
(31), an example of which is shown in Figure 3 along with
the corresponding control input.

It can be verified from the above constraints that the
trajectory consists of at most five sections:

• [0 t1] is an interior arc, with u∗ = ±umax.
• [t1 t2] is a boundary arc, with u∗ = 0.
• [t2 t3] is an interior arc, with u∗ = ∓umax.
• [t3 t4] is a boundary arc, with u∗ = 0.
• [t4 tf ] is an interior arc, with u∗ = ±umax.

4.4 Optimal Solutions

To fully specify the control trajectory, we must solve for
the five times t1, t2, t3, t4, and tf and the initial control
input.

The solution is constrained by the three terminal state
conditions (21). The equations of motion (17)–(19) are
straightforward to integrate analytically, resulting in three
equations of first, second, and third order in the switch
times t1 . . . tf , respectively.

Furthermore, each boundary arc induces one additional
constraint, in that one of the following conditions must
hold:

• If the duration of the boundary arc is nonzero (t2 −
t1 > 0 or t4−t3 > 0, respectively), then s3 must be on
the constraint at the beginning of the boundary arc
(|s3(t1)| = x3,max or |s3(t3)| = x3,max, respectively).

• If the above condition does not hold, the correspond-
ing boundary arc must vanish (t2 − t1 = 0 or t4 −
t3 = 0, respectively).

This yields five equations for five unknowns, meaning that
the solution is fully determined by the constraints. The re-
sulting system of equations is rather large and is therefore
not shown here. It is available online on the first author’s
website at www.idsc.ethz.ch/people/staff/hehn-m.
The solution to the system of equations is computed using
a bisection root-finding algorithm.

4.5 Feasibility of Control Inputs

After the time-optimal trajectories have been calculated
for each degree of freedom, the feasibility of the control
inputs is checked. The thrust input a is guaranteed to
be feasible because of the choice of (ẍmax, ÿmax, z̈max)
according to Equations (12)-(13). For the rotaional control
inputs, we calculate the maximum value of the bound (11)
along the planned trajectory. Using Equation (15), the
bound can be expressed as

ωx,y ≤

∥

∥

∥

∥

∥

v

‖f‖
−

ffT v

‖f‖
3

∥

∥

∥

∥

∥

. (34)

It is easy to bound ωx,y for a planned trajectory using
this equation: as v is piecewise constant and f is piecewise
linear, the extrema of the above expression can easily be
found by evaluating (34) at points where its derivative van-
ishes, and at the switching times t1 . . . tf . The expressions
for the extrema offer limited insight. They are therefore
not reproduced in this paper, but may be inspected on
the first author’s website.

If the bound calculated exceeds the allowable value, the
trajectory is replanned after reducing umax for all degrees
of freedom. By the triangle inequality and the Cauchy-
Schwarz inequality [Bernstein, 2005], the expression (34)
is at most

ωx,y ≤
‖v‖

‖f‖
+

∥

∥ffT v
∥

∥

‖f‖
3

(35)

ωx,y ≤
‖v‖

‖f‖
+

‖f‖
2
‖v‖

‖f‖
3

(36)

ωx,y ≤ ‖v‖
2

‖f‖
. (37)
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Fig. 4. Closed-loop control using the trajectory planning.
ωz can be chosen freely (e.g. set to zero).

By the design of the trajectory, ‖f‖ is bounded by
equations (12)-(13). It can therefore be seen that this
bound on ωx,y scales with ‖v‖. Reducing umax for all
degrees of freedom therefore guarantees the finding of a
feasible trajectory.

5. CLOSED-LOOP CONTROL

The trajectory planning procedure is sufficiently fast to be
performed for every controller update. We therefore close a
feedback loop by re-planning the entire trajectory on each
controller update, and applying the control inputs of the
first control interval. The method is very similar to model
predictive control (see, for example, Garćıa et al. [1989] for
an overview) in that an optimal trajectory is generated at
each time step.

However, the planning is carried out using the planning
input v and not the true vehicle control inputs a, ωx, ωy,
and ωz. The control inputs must therefore be calculated
from the planned trajectory.

Whereas the control inputs are usually assumed piece-
wise constant in model predictive control, the trajectory
planned here allows for continuously varying control inputs
(the planning input v is piecewise constant, but the con-
trol inputs ωx, ωy and a vary over time). Because actual
commands to the underlying inner control loops are gener-
ated in discrete time intervals, we numerically average the
control inputs over the (typically small) control interval,
and command this average to the underlying control loops.
This method has shown to work well in our experiments,

however further investigation is necessary to determine the
best discretization method.

As discussed in Section 3, the planned trajectory does not
define ωz. We choose to set ωz = 0 in order to minimize
the control effort required for this degree of freedom. As
the choice of ωz is independent of the trajectory, it would
also be possible to choose other values, such as those
that maintain the vehicle heading constant. Numerically
integrating Equation (4) over the control interval with the
constraints (15) and ωz allows the calculation of the body
rates ωx and ωy for the interval.

The commands to the vehicle are completed by the collec-
tive thrust command. For this, no numerical integration is
necessary as Equation (6) can be evaluated analytically.

Figure 4 shows the flow chart of closed-loop control using
the trajectory planning. At every controller update, the
initial conditions for the planning problem are updated.
The initial position and velocity are states of the system,
and the initial acceleration is constructed using the cur-
rent vehicle attitude and the last thrust command using
Equation (3). The path planning is then carried out and,
if necessary, adapted to ensure feasibility of the trajectory.
From the planned trajectory, the control inputs are calcu-
lated.

6. RESULTS

The planning and control algorithm presented herein has
been implemented in the Flying Machine Arena, an indoor
aerial vehicle development platform at ETH Zurich.

6.1 Experimental Setup

We use modified Ascending Technologies ‘Hummingbird’
quadrocopters [Gurdan et al., 2007] in our experiment. The
vehicles are equipped with custom electronics, allowing
greater control of the vehicle’s response to control inputs, a
higher dynamic range, and extended interfaces [Lupashin
et al., 2010].

Commands are sent through a proprietary low-latency
2.4GHz radio link at a frequency of 50Hz. Command
loss is in the range of 0.1%. An infrared motion track-
ing system provides precise vehicle position and attitude
measurements at 200Hz. The total closed-loop latency is
approximately 30ms.

The position and attitude measurements are filtered by
a state observer providing full state information. Fur-
thermore, the observer predicts the system state into the
future to compensate for the closed-loop latency, such that
controllers can be designed for the latency-free system.

The controller computation is carried out on a conven-
tional desktop computer using an Intel Core2 Duo pro-
cessor at 3.16GHz. A full evaluation of the trajectory
planning and control algorithm, as depicted in Figure 4,
always took less than 0.2ms (1% of the planning period)
during these experiments.

6.2 Experimental Results

During experimental flights, target points were manually
controlled through keystrokes on the controlling computer.
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Fig. 5. One-dimensional flight trajectory during experi-
ment. The vehicle starts at rest, and the target point
is set to y = −3m. The actual flight trajectory is de-
picted by the black line. Several trajectories planned
along the way are shown by dotted blue lines, starting
at the respective blue circle.

The maximum allowable accelerations were chosen to be
ẍmax = ÿmax = z̈max = 7m/s2. The planning input limita-
tion was set to umax = 50m/s3. A more conservative ver-
sion of the feasibility check (34) was used 1 , the maximum
permissible body rate command ωx,y was set to 15 rad/s. A
video showing the experiments presented here is available
online at www.idsc.ethz.ch/people/staff/hehn-m.

Figure 5 shows a test of a translation of 6 meters along
the the y-axis, with the set points for both other axes
remaining constant. The test was started with the vehicle
at rest. It can be seen that the vehicle followed the
trajectory planned at the start of the experiment well.
While re-planning occurs at the control update rate of
50Hz, we only show a selection of planned trajectories.

Figure 6 shows the flight trajectory of a motion along
both the x- and the y-axis. In this test, the vehicle was
initially in motion, with the starting point of the trajectory
representing the time when the target point was switched.
The dynamic constraints lead to the rather smooth curve.
An overshoot of about 0.2m can be seen at the end of the
maneuver.

Figure 7 shows the same experiment described above,
with all coordinates visible. It is interesting to note the
increasing error in z during the deceleration at the end of
the trajectory. We suspect that strong aerodynamic effects
caused this rise of the vehicle. The vehicle reached a peak
speed of 7.1m/s, a speed at which aerodynamic effects
contribute significantly to the system dynamics. Huang
et al. [2009] show that, at such speeds, the flight dynamics
of quadrocopters begin resembling those of an airplane.
Furthermore, the propellers can produce up to 70% more
thrust for a given power.

Figure 8 shows the dynamic replanning capabilities in
an extreme situation: The experiment starts with the
vehicle at a velocity of 7.5m/s, and the target point 8.5m
away from its current position. The total flight duration
shown in the figure is 4 s. As seen before, an upwards

1 The experiments were carried out before the rotational bound
results (34) were derived. Instead, a strictly more conservative bound,
obtained by using the one-norm of Equation (9), was used.
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Fig. 6. Flight trajectory during experiment. The target
point is marked by a red cross. The vehicle starts
at nonzero velocity and acceleration. Its actual tra-
jectory is shown in black, and a selection of planned
trajectories are shown by dotted blue lines, starting
at the respective blue circle.

deviation from the planned trajectory is noticeable when
the vehicle decelerates, both at the beginning and the end
of the trajectory. This matches the aerodynamic reasoning
above. The effect has been observed consistently when
decelerating from high speeds during the testing of the
algorithm.

7. CONCLUSION AND OUTLOOK

in this paper, we presented a planning algorithm that
respects the dynamic and input constraints of quadrotor
vehicles. The algorithm is fast enough to be evaluated
at every controller update, and therefore allows feedback
control based on planned trajectories. This planning and
feedback control method shows promise, as validated by
experiments in the Flying Machine Arena.

In the current algorithm, we have chosen to set fixed limi-
tations on the accelerations allowed for each coordinate.
One means of improving the planning algorithm would
be to set variable acceleration bounds. This would permit
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Fig. 7. 3D flight trajectory during experiment. The target
point is marked by a red cross. The vehicle starts at
nonzero velocity and acceleration. Its actual trajec-
tory is shown in bold black, and the planned path
at various instances in time in dotted blue (starting
at the blue circles). The thin black line shows the
projection of the actual trajectory on the x-z-plane.
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Fig. 8. Flight trajectory during ‘extreme-case’ experiment.
The target point is marked by a red cross. The vehicle
starts at high velocity and acceleration. Its actual
trajectory is shown in bold black, and planned paths
at various instances in time in blue (starting at the
circles). The thin black line shows the projection of
the actual trajectory on the x-y-plane.

us to determine the distribution of allowable accelerations
that minimizes the total duration of the trajectory. As is,
the algorithm is fast enough to evaluate approximately 100
different combinations of allowable accelerations for each
controller update, making online parameter optimization
a viable solution. Furthermore, synchronizing the arrival
time of the three degrees of freedom would allow planning
trajectories to states where the vehicle is not at rest.

A second improvement would be to consider the asym-
metry of the quadrotor dynamics about the z-axis in
the acceleration limits: During the entire planning pro-
cedure, a fixed amount of thrust is reserved for vertical
accelerations. As gravity assists vertical decelerations, the
reserved thrust is not required during deceleration phases
and could be used to increase the speed of the trajectory in
horizontal directions. This could be represented by time-
varying allowable horizontal accelerations in the planning
algorithm.

Finally, it should be possible to mitigate dominant aero-
dynamic effects. Experimental results showed systematic
discrepancies between planned flight trajectories and ac-
tual trajectories. The largest effect was a significant rise
of the vehicle when decelerating from high speeds. This
effect can be explained by well-known aerodynamic effects
of quadrotors moving at high speeds and high angles of
attack. The error appears to be systematic and repeatable.
It should therefore be possible to compensate for this
effect, either by refining the dynamic model or through
learning algorithms.

We are currently seeking to extend the planning algorithm
with these improvements to further improve the flight
performance. The implementation and experimental val-
idation of the method as presented herein is an important
step towards this end. The algorithm can be employed as-
is, or built upon.
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