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Abstract—We extend the classic control problem of the
inverted pendulum by placing the pendulum on top of a
quadrotor aerial vehicle. Both static and dynamic equilib- A2
ria of the system are investigated to find nominal states of
the system at standstill and on circular trajectories. Control
laws are designed around these nominal trajectories. A yaw-
independent description of quadrotor dynamics is introduced, z
using a ‘Virtual Body Frame'. This allows for the time-invariant
description of curved trajectories. The balancing performance y
of the controller is demonstrated in the ETH Zurich Flying o
Machine Arena testbed. Development potential for the future
is highlighted, with a focus on applying learning methodology X
to increase performance by eliminating systematic errors that
were seen in experiments. Fig. 1.  The inertial coordinate syste® and the vehicle coordinate
systemV.

|. INTRODUCTION

The inverted pendulum s a class!c contrql problem, Of|'n Section VI and conclusions are drawn in Section VII,
fering one of the most intuitive, easily describable and & here an outlook is also presented

alizable nonlinear unstable systems. It has been invéstiga
for several decades (see, for example, [11], and references Il. DYNAMICS
therein). It is frequently used as a demonstrator to show-
heoretical advan .g. in reinforcement | in . . .
case theoretical advances, e.g einforcement leafbing the inverted pendulum for the trajectory-independent gene
neural networks [14], and fuzzy control [13]. case
In this paper, we develop a control strategy that enablesGiven that the mass of the pendulum is small compared to

an [nverteq pendglum 0 balance on top of a quadrotqtrhe mass of the quadrotor, it is reasonable to assume that the
Besides being a highly visual demonstration of the dynamic

capabilities of modem quadrotors, the solution to such endulum’s reactive forces on the quadrotor are negligible

AR he dynamics of the quadrotor, then, do not depend on
complex control problem offers insight into quadrotor ¢oht .
. the pendulum, whereas the dynamics of the pendulum are
strategies, and could be adapted to other tasks.

Quadrotors offer exceptional agility. Thanks to the Off_?nfluenced by the motion of the quadrotor. This assumption

: L is justified by the experimental setup, with the weight of
center mounting of the propellers, extraordinarily fagtaro .
. . ! S . . the pendulum being less than 5% of that of the quadrotor
tional dynamics can be achieved. This is combined with ty Vehicle
ically high thrust-to-weight ratios, resulting in largehéev- '
able translational accelerations when not carrying a @aylo A, Quadrotor
While most early work on quadrotors focused on near-
hover operation (e.g. [5], and references therein), a grgwi

community is working on using the full dynamical potential

of these vehicles. Flips have been executed by several grour%t]titudev is defined by three Euler angles. From the inertial

some focusing on speed and autonomous learning [7] a . , .
coordinate system, we first rotate around thaxis by the
some on safety guarantees [3]. Other complex maneuvers . .
) . . . . aw anglea. The coordinate system is then rotated around
including flight through windows and perching have beel)g] . . .
the newy-axis by the pitch anglg, and finally rotated about
demonstrated [8]. he newz-axis by the roll angley:
In Section I, we introduce the dynamic models useé y ger:
in the controller design. Section Il presents static and o
dynamic nominal trajectories for the quadrotor to follow. vE(a,8,7) = R: (a) Ry (B) Bs (v) @
The dynamics are then linearized around these trajectiories \yhere
Section 1V, and linear state feedback controllers are desig

in Section V. The experimental setup and results are shown

We derive the equations of motion of the quadrotor and

The quadrotor is described by six degrees of freedom: The
translational positiona, y, z) is measured in the inertial
coordinate systenO as shown in Figure 1. The vehicle
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[ cosp 0 sinf] the y-axis). For notational simplicity, we describe thetiske
R,(B)=| 0 1 0 |, () position of the pendulum along the z-axis as

|—sin3 0 cosf]|

[cosa —sina 0] (:=VL?>—r2—s%, (8)
R.(a) = |sinac cosa O . (4)  whereL to denotes the length from the base of the pendulum

L 0 0 1] to its center of mass. We model the pendulum as an iner-

The translational acceleration of the vehicle is dictatgd bfi2less point mass that is rigidly attached to the mass cente
the attitude of the vehicle and the total thrust produced byf the quadrotor, such that rotations of the vehicle do not
the four propellers. With representing the mass-normalizegc@use a motion of the pendulum base. In the experimental

collective thrust, the translational acceleration in theriial  S€tup, the point that the pendulum is attached to is mounted
frame is off-center by about 10% of the length of the pendulum.

While this assumption causes modeling errors, it simplifies

z 0 0 the dynamics to such a great extent that the problem becomes
il =SQR(a,B,7) |0 + | 0 (5) :

Y 1% 257 . much more tractable. The Lagrangian [9] of the pendulum
z a -9 can be written as

The vehicle attitude is not directly controllable, but it

is subject to dynamics. The control inputs are the desired o 1L/, .9 Ca2 . TP+ 85 4
rotational rates about the vehicle body axes,,(wy, w.), 9 (@+7)"+ (G +8)"+ (2 - ¢ ) (9)
and the mass-normalized collective thrust,as shown in —g(z+0) ,

Figure 2. High-bandwidth controllers on the vehicle trao t ) )

desired rates using feedback from gyroscopes. The quadrotoWheré we assume unit pendulum mass without loss of
has very low rotational inertia, and can produce high tosquegenerallty. The first term represents the' kinetic energy of
due to the outward mounting of the propellers, resulting if1€ Pendulum, and the second the potential energy. The full,
very high achievable rotational accelerations on the oafler NOnlinear dynamic equations can be derived fréfnusing

200 rad/s?. The vehicle has a fast response time to changes f¢nventional Lagrangian mechanics:

the desired rotational rate (experimental results havevsho d (0.5 0.
time constants on the order @ ms). We will therefore p (61”) T or 0 (10)
assume that we can directly control the vehicle body rates d /09 0.7
and ignore rotational acceleration dynamics. As with the 7 (65) ~ s = 0, (11)

vehicle body rates, we assume that the thrust can be changed
instantaneously. Experimental results have shown that theresulting in a system of equations of the form
true thrust dynamics are about as fast as the rotational i
dynamics, with propeller spin-up being noticeably fastent L] =f(rs,78,%,3,2) , (12)
spin-down.

The rates of the Euler angles are converted to the vehicighere f are the nonlinear equations (13) and (14).

body coordinate systefi through their respective transfor- C. Combined dynamics

mations:
_ The full dynamics of the combined system are described
W 7 . 0 . . 0 entirely by Equations (5), (7), and (12). The three body
wy| = |0 + R (7) |B| + Ry (v) Ry (B) 0 rate control inputs(w,,w,,w.) control the attitudeV of
Wz 0 0 o the vehicle in a nonlinear fashion. This attitude, combined

(6)

The above can be written more compactly by combining
the Euler rates into a single vector, calculating the reieva
rows of the rotation matrices, and solving for the Euler angl
rates:

v cosBcosy —siny 0] ' Tw,
B| = |cosBsiny cosy O wyl| - (7)
& —sinf 0 1 Wy

B. Inverted Pendulum

The pendulum has two degrees of freedom, which we
describe by the translational position of the pendulumeentrig. 2. The control inputs of the quadrotor: The rotatioraEsw,, wy,
of mass relative to its base @ (r along the x-axiss along andw. are tracked by an on-board controller, using gyroscopebizeid




= m (—7‘4:E— (L2 = %)% 5 — 202 (s7s + (L2 + 52) &) + % (3 + 58— C(g+ %)) +
r(=L%s5+ 8%+ 57 (12 = C(9+ %)) + L* (=77 = 8 + ( (g + 2)))) (13)
§= ﬁ (754y — (L2 =) § =26 (ri$ + (L2 +12) §j) + 8° (PP + rif — C (g + ) +
s (L2 + 1% + 12 (82 = C(g+ 2)) + L (=72 = 82 + ¢ (g + 2)))) (14)

with the thrusta, controls the translational acceleration of To describe the vehicle position, the following coordinate
the vehicle. While the acceleration drives the translationaystemC is introduced, with(u, v, w) describing the position

motion of the vehicle linearly, it also drives the motion ofin C:
the pendulum through nonlinear equations. The combinedr,,

' k i ) U cosQt —sinQt 0| |[u
system consists of thirteen states (three rotational axd si =R, () |v| = |sinQt cosQt 0] |v
translational states of the quadrotor, and four states ef th |, w 0 0 1w
pendulum), and four control inputs (three body rates, and (19)
the thrust). To describe the vehicle attitude, a second set of Euler angle

is introduced, describing the ‘virtual body fram& and
namedn, p, andv:

In this section, we find static and dynamic equilibria of
the system that satisfy Equations (5), (7), and (12). These a %R(n, w,v) =R, (n) Ry (1) Ry (V) , (20)
used as nominal trajectories to be followed by the quadrotor i )
Corresponding nominal control inputs are also describesl. W subject to the constraint that
denote nominal values by a zero index,(r,, etc.). 0

0
PR(a,B,7) [0 =FR(n,pu,v) |0] . (21)
1 1

IIl. NOMINAL TRAJECTORIES

A. Constant position

In a first case, we require,, y,, and z, to be constant.
Substituting these constraints into (5), it can be seen th
B, = 0 and~, = 0 solve the equations with, = g, while
«, can be chosen freely. We arbitrarily choose toget 0.

Using the given angle$a,, 8,,7,), equation (7) can be
solved with the body rate control inputs beiag, = w,, =
Wz, = 0.

Inserting the nominal statés:,, y,, z,) into the pendulum
equations of motion (12), they simplify to

The above equation defines values for three elements of the
%tation matrices. As every column of a rotation matrix has
unit norm [12], however, this equation only defines two of
the angleqn, p, v).

Comparing the constraint (21) with the translational equa-
tion of motion of the vehicle (5), it is straightforward toese
that the virtual body fram@V represents an attitude that is
constrained such that it effects the same translationalbmot
of the quadrotor as the vehicle attitudé. The remaining

9¢3 — L2 (#2 4 §2) + (si — ré)? degree of freedom represents the fact that rotations aheut t
= T2c , (15) axis along whichw, acts have no affect on the quadrotors
3 9/ o . 9 translational motion.
5= SgC — L2 (72 4 8°) + (si —19) . (16) Applying (19), its derivatives, (21), and setting the free
L2¢? parametern = Qt, the quadrotor equation of motion (5)
These equations are solved by the static equilibrium simplifies to
. . . 2 .
—r =0 17 i asin g cosv + Q7u + 2Q0
e (A7) | =| —asinv—2Qu+ Q%0 . (22)
§ =5, =0, (18) w acospcosv —g

meaning that, as expected, the inverted pendulum is exactlyThe circular trajectory is described by, = R, v, = 0,
over the quadrotor. andw, = 0. Using these values, the nominal Euler angles
1o andv,, and the nominal thrust, can be calculated:

B. Circular trajectory )

As a second nominal trajectory, the quadrotor is required 1, = arctan(— ), (23)
to fly a circle of a given radiugk at a constant rotational
rate (2, at a constant altitude,. vo =0, (24)
We seek to transform the equations of motion into different g = /g2 4 (O2R)? . (25)

coordinate systems, such that the nominal states and the
linearized dynamics about them can be described in a time-Knowing the nominal values fafr,, i, v, ), we solve for
invariant manner. (v, B0, 7o) Using Equation (21). Analogous to the constant



position case, we set, = 0, simplifying (21) to

cos Ot sin i, cos v, + sin Qt sin v,
sin Q¢ sin i, cos v, — cos Qtsiny, |
COS [1 COS Uy

sin f3, cos 7,
—siny, =
cos [3, cos 7,

(26)

which can be solved for3, and ~,. This completes the
description of the nominal states required for the traisiat
motion (5): In the coordinate systerfisand W, the nominal

that the centripetal force acting on it is compensated for by
gravity. If the center of mass were to lie further th&h
inwards, the centripetal force would change sign, making
the pendulum fall.

IV. DYNAMICS ABOUT NOMINAL TRAJECTORIES

Linear approximate dynamics are derived through a first-
order Taylor expansion of the equations of motion (5), (7),
and (12) about the nominal trajectories found in Section

position and attitude are constant. Using Equations (19)). We denote small deviations by a tildez,( 7, etc.).

and (26), the time-varying nominal states@andV may
be found.

We present only the resulting linearized dynamics. The
corresponding derivations are not shown in this paper due

To calculate the rotational rate control inputs in Equato space constraints, but are made available online.
tion (7), we take the first derivative of Equation (26). It can

be shown that

RQ3 cos Ly, (tan 3, tan v, cos(Qt) + cos 1 B, sin(Qt))

Bo:

A. Constant position

Assuming a constant nominal position and zero yaw angle,
the three translational degrees of freedom of the quadrotor
pendulum system decouple entirely along the three axes

2 Q2R 2
g*+( ) 27) of the O coordinate system, resulting in the following
. equations:
. RO cos ty, cos() quat
To= 2 202 (28) F—id 3
& + (Q2R) r=7r-589 (34)
Combining these equations with the results from -9 - 35
; : §=5-+79 (35)
Equations (26) and (7), the nominal states can be L
solved for the nominal control iNputgw.,,wy,,ws,)- T =pg (36)
The full derivation is made available online at §=—A3g (37)
www. i dsc. et hz. ch/ peopl e/ st af f/ hehn-m. L
Identically to the vehicle, the pendulum relative coordi- B =y (38)
natesr and s are rotated by¢: N =Gy (39)
zZ=a (40)

r| _ |cosQt —sinQt| |p
[5} o [sith cos Qt ] [q} ' (29)

The two horizontal degrees of freedom represent fifth-

Applying this rotation to the Lagrangian derivations oforder systems, with the vehicle forming a triple integrator
the motion of the pendulum (10), (11) and setting the basom the body rate to its position. The vertical motion is
motion (i,4, %) to the circular trajectory, the pendulum represented by a double integrator from thrust to position.

dynamics can be shown to be

(pﬁ +9°+aqi+4* | @’ +p*p* +2papq 9

_|_ =

- Qz>

¢? ¢t ¢
+5—2Q¢— RQ* =0
(30)
i+ @ +pp+p* | PP+ 20000+ 2 9
q 2 + 1 -z
¢ ¢ ¢
+G+20 =0
(31)

We seek a solution wheng, = ¢, = p, = ¢, = 0, leading
to the following constraints for equilibrium points:
94

Q*(q0) + e 0, (32)
92(R+po)+%=o. (33)

The only solution to the first equation 45 = 0. The second
equation defines a nonlinear relationship betw@erk, and
po, With a solutionp, always existing in the range R <

po < 0. This result is intuitive: The center of mass of the ..
pendulum must lie towards the center of the circle, such’

B. Circular trajectory

To derive linear dynamics about the circular trajectory,
the Euler angle rateg and v are treated as control inputs.
Solving the time-derivative of equation (21) (analogously
solutions (27) and (28) for the nominal case) allows the
calculation of (3,7%). These can then be converted to the
true inputs(w,, Wy, w,) using Equation (7).

In contrast to a constant nominal position, the dynamics
on a circular trajectory do not decouple. The linearized
equations of motion can be shown to be

= C? Q2 gL2 Q

s Go - 9

b= 75 {p( e ) + 240+ (41)
. Do . ~Po .
u(—c—ao Sin fy — o oS fig) + a(= cos L, — sin p,)

0 0
§= (0 + Cg) — 20 + 7a, (42)
0
U = asin i + fia, cos fio + 20 + 0> (43)
0= —va, — 208 + 90> (44)
= Q.COS by — [0, SiN f1o (45)



We observe that the linearized dynamics are indeed timgtatform at ETH Zurich [7]. We present results demonstgatin
invariant in the coordinate systen@$ and W. the performance of the controllers designed in the previous
The above equations reduce to Equations (34) — (40) 8ection.
settingR =0 andQ = 0. If R =0, Q is a free parameter .
(see Equation (33)), allowing the description of the dyrzami A. Experimental setup

(34) — (40) in a rotating coordinate system. We use modified Ascending Technologies ‘Hummingbird’
quadrotors [4]. The vehicles are equipped with custom elec-
V. CONTROLLERDESIGN tronics, allowing greater control of the vehicle's respons

We design linear full state feedback controllers to stabili ©© control inputs, a higher dynamic range, and extended
the system about its nominal trajectories. We use an infiniténterfaces [7]. A small cup-shaped pendulum mounting point
horizon linear-quadratic regulator (LQR) design [1] andS attached to the top of the vehicle, approximatglgm

determine suitable weighting matrices. above the geometrical center of the vehicle. The pendulum
can rotate freely about the mounting point up to an angle
A. Constant position of approximately 50 degrees. At larger angles, the mounting

Because the system is decoupled in its nominal state, tRint offers no support and the pendulum falls off the vehicl
control design process can be separated. The two horizontapomma“qS are sent through a proprietary low-latency
degrees of freedom are single-input, five-state systems. Th4 GHz radio link at a frequency df0 Hz. Command loss
vertical degree of freedom is a single-input, two-stateesys 1S in the range 0.1%. An infrared motion tracking system
Although simpler design methods exist for such Systemgyrovides pre(_:ise vehicle pos_ition and attitude measurgsnen
LQR is used to make the results easily transferable to tf 200 Hz, using retro-reflective markers mounted to the ve-
design for a circular trajectory. We design a lateral cdregro hicle. The total closed-loop latency is approximatglyms.
that is identically applied to thé-7-system and thej-3- The |_nverted p_endulum consists of a carbon fiber tube,
system (except for different signs mirroring the signs ia thmeasuringl.15m in length. The top end of the pendulum
equations of motion (34)—(37)). A controller for the vealic carries a retro-reﬂeptive marker, allowing. the posi_tionhi&
direction is designed separately. pomt to be determined throu_gh the motion tracking system

For the lateral controllers, we penalize only the vehicld the same manner as vehicles are located. The center of
position @ or §) and the control effortd, or &,). There Mass of the pendulum &565 m away from its base. Figure
is no penalty on the pendulum state. One tuning parametdrShows the quadrotor and the pendulum.
remains: The ratio of the penalties on position and control Conventional desktop computers are used to run all control
effort controls the speed at which the position set point iglgorithms, with one computer acting as an interface to the

tracked. Values for this ratio are tuned manually until the
system shows fast performance, without saturating the con-
trol inputs. This tuning is initially carried out in simulan,

and then refined on the experimental setup.

The vertical controller is tuned much in the same manner
as the lateral controller. Here again, we tune only the ratio
between penalties on position errors and control efforil unt
satisfying performance is achieved.

B. Circular trajectory

On the circular trajectory, the system represents a thirtee
state system with three control inputs that cannot readily
be decoupled. To more easily tune the weighting matrices,
we use the same approach as in the constant position case
and penalize only the position errorg, (v, and w) and
control effort (i, 7, anda). The relative size of weights on
control inputs and states is carried over from the stamdstil
design. Because the controller for the vertical axis wasdun
separately in the standstill case, the relative size of the
penalties on the horizontal positiong, () and the vertical
position (v) is adapted. Again, this is first carried out in
simulation and then improved upon using the experimental
testbed.

VI. EXPERIMENTAL RESULTS

The algorithms presented herein were implemented ifg. 3. The quadrotor balancing the pendulum, at standdtile mass
the Flying Machine Arena, an aerial vehicle developmergenter is about half-length of the pendulum.



Error (m) switch to a circular nominal trajectory and a corresponding
controller occurs, with®? = 0.1 m. The controller is seen to
stabilize the pendulum, with the pendulum relative positio
errors in the rotating coordinate system ) converging
to non-zero values. The vehicle errors show two distinct
components: Like the pendulum errors, there is a non-zero
mean error. Additionally, the error oscillates at the riotal
rate €2, representing a near-constant position error in an
inertial coordinate system. Figure 6 shows a comparison
Time ¢ (s) of the actual and nominal trajectories of the vehicle and

: pendulum in the inertial coordinate systetnh It confirms
that the oscillating errors in the rotating coordinate egst
Fig. 4. State errors during balancing: Pendulum positieorgf, 5) and ar.e ConStam.pOSItlon errors !n the inertial coordinateesys
quadrotor position errotz, 7). The pendulum is manually placed on the With @ magnitude of approximately 0.1m. The mean errors
vehicle at approximately = 4.25 s, and the balancing controller is switched jn C are represented by the circle radius being significantly
on at approximately = 4.75s. .

larger than the nominal valug.

0 5 10 15

A video showing the experiments of both
testbed. Data is exchanged over Ethernet connections. Ases presented herein is available online at

Luenberger observer is used to filter the sensory data apflw. i dsc. et hz. ch/ peopl e/ st af f / hehn-m.
provide full state information to the controller. The ohsar

also compensates for systematic latencies occurring in the

control loop, using the known control inputs to project the

tem state into the future.
system state into the future Error (m)

B. Constant position

Experiments are initialized by manually placing the pen-
dulum on the mounting point. The vehicle holds a constant
position using a separate controller, waiting for the pendu
lum. The balancing controller is switched onrifand s are
sufficiently small for 0.5 seconds.

Figure 4 shows the pendulum position errarss) and the

0.2r S ereeenaas ~

horizontal quadrotor position errorg;,(g). The pendulum 0al T b
is placed on the vehicle at approximately= 4.25s, and e Time t (s)
the control is switched from position holding to balancing 0 5 1'0 15

at approximatelyt = 4.75s. The pendulum position errors
are relatively large in the beginning, but quickly convergesig. 5. Errors in the rotating coordinate system: Pendulusitjom error
to values close to zero. The vehicle settles at a stationafi @) and quadrotor position errafi, #). The pendulum is balanced by
offset on the order of om from the desired position. Note e adetr du e entre duratn shour o i it © 25,
that the balancing controller does not provide feedback amjectory with R = 0.1 m.

integrated errors. The main suspected reason for thesiystea
state errors are miscalibrations in the system: Errors én th
vehicle attitude measurement lead to the linear controller
trading off the attitude error and the position error, armsbd 77| s (o o)™ (z,v)
measurements of the on-board gyroscopes result in a biased | ... (ro,50) = ()
response to control inputs.

Though originally designed for a constant position, this
controller has been successfully tested for set point imack
at moderate speeds. A video of this is available online at
www. i dsc. et hz. ch/ peopl e/ st af f/ hehn-m.

y Position (m)
o

-0.2
C. Circular trajectory
We arbitrarily choose to sep, = f% bringing the
center of mass of the pendulum half-way between the vehicle 04 -02 0 02 04
and the circle center, nominally. Assuming a givBn this x Paosition (m)

fixes Q2 through the equilibrium constraint (33). Figure 5

shows the system performance when circling. The pendulugy. 6. The trajectory of the quadrotor and pendulunGincompared to
is first balanced at a constant position. At= 2s, a the nominal trajectory.



Error (m) P i 0.4[ =weremeees (20,10) (2,y)
0.2} P ~ S (70,50) (r,s)
L . E 02
) c
. RO g
z
-0.2 ol
> .0.2
0.4 _Timet (s) | 04
0 5 10 15 .04 -02 0 02 04

. . . . . . x Position (m
Fig. 7. Simulation results: Errors in the rotating coordinatystem: ( )

Pendulum position errofp, ) and quadrotor position errdii, v). At t =
2s, the controller is switched from a constant nominal positma circular  Fig. 8.  Simulation results: The trajectory of the quadrotod @endulum
trajectory with R =0.1m. in O, compared to the nominal trajectory.

D. Comparison with simulation results positioning errors increase with the circle size, but the

The controllers have also been tested in simulation. Tlﬁeontrollers are still capable of keeping the pendulum in

Flying Machine Arena software environment allows the alance.

testing of controllers by simply re-routing the controlier VII. CONCLUSION AND OUTLOOK

putputs toas_imulation.Thg simulation reproduces.the\beha We have developed linear controllers for stabilizing a
ior of the eptlre system. It includes the full dynamics of thebendulum on a quadrotor, which can be used for both static
quadrotor, including the on-board control loops, rotadlon anqg gynamic equilibria of the pendulum. The virtual body
accelerations, and propeller dynamics. It also reproducg$me is a useful tool to describe motions in a convenient
system latencies and the noise characteristics of sems®rs. 4o rdinate system (e.g. allowing the use of symmetries)
the simulation output mimics the motion system’s output ag;ithout enforcing this rotation for the vehicle. Using its
closely as possible, the same state observer is employgthperties and a rotating coordinate system, the system
in reality and in 5|mula_t|0n. This S|_mulat|on e”V'ronme”tdescription is time-invariant on circular trajectories.

has been _extended to |_ncl_ude the |nyerted pendl_JIum. TheThis allows the straightforward application of well-
pendulum is modeled with its full nonlinear dynamics (12)estaplished state feedback design principles. Contsoftar
neglecting the off-center mounting on the vehicle for re&so giangstill and circular motion have been validated experi-
of tractability, as discussed in Section II-B. Figures 7 &1d mentally and are shown to stabilize the pendulum. This key
show the exact same circular trajectory experiment that Wasilestone allows us to shift our focus towards improving
carried out on the testbed (Section VI-C). For this simalati system performance.

systematic errors in the gyroscopic sensors and the mOtionExperimental results revealed systematic errors when ap-

tracking system were disabled. In the initial standstilagt  ying the control laws. There appear to be different sosirce
(the first two seconds in Figure 7), all errors are close tgf these errors:

zero. During circling, the errors converge to nearly steiy
values that are significantly smaller than in the real tektbe
Thedcllose,ma_tchloz tget vghut:les _norlgmal trgjectory an<tj tT)e information from the motion capture system, and in
pendulums simulated trajectory In Figure © appears 10 D€ o yenicle on-board control loops using gyroscope
coincidental.

. o . : , feedback.

This result highlights the influence of biased sensory in-
formation, leading to position errors in the inertial caoate mounted at the center of mass of the vehicle is violated
systemO. These are observed as oscillating error€in in the experimental setup. Rotations of the vehicle

The mean errors on the trajectory also show different  iharefore cause a motion of the pendulum base point.

o Miscalibrations of sensors cause biases in the experi-
mental setup. These errors are observed in the attitude

o The simplifying assumption that the pendulum is

characteristics in simulation and reality. This is partacly « The equations of motion used to derive nominal tra-
noticeable in the pendulum position erandg. The sim- jectories and linear models neglect many real-world
ulation contains a detailed dynamic model of the quadrotor  ‘offects such as drag and underlying dynamics of the
that has been validated in several experiments. It is tbexef control inputs.

probable that the differences are due mainly to the simdilate | The control laws are designed assuming continuous-
pendulum dynamics. The non-modeled off-center mounting  time control, while the vehicle is controlled at only
of the pendulum could explain this discrepancy. 50HzZ.

Circle radii R of up to 0.5m have been successfully We have identified two approaches for extending the
tested in simulation and reality. The vehicle and penduluroontroller design presented in this paper. The first, andt mos



straightforward approach, is to include states that remtes
the integrated errors, and to weigh them appropriately én th [1]
controller design. This would permit compensation for some
of the systematic errors. For instance, one would expest thil2]
to drive the vehicle position errors in the standstill case t
zero.

Alternatively, a machine learning approach could be ap{3!
plied. The measurement data indicates that systematic er-
rors greatly dominate stochastic errors. During the cancul
trajectory in particular, there are systematic, repeateare  [4]
that could well be learned and compensated for in a feed-
forward fashion. The system could therefore ‘learn’ better
nominal trajectories, resulting in a correction of the noahi
control inputs. This could, for instance, be accomplishé&t w
iterative learning control [10], [2]. The present problem i [6]
especially well suited to this type of approach due to its
repetitive nature. We are planning to use this experiment
setup as a testbed and benchmark for learning methods.

The concept of the virtual body frame is applicable to a
wide range of quadrotor control problems that goes beyontflg]
balancing a pendulum. It allows the time-invariant descrip
tion of general circular trajectories if the circle size aate ]
are constant. We are investigating extensions of this qunce
to allow its application to more general problems. [10]

(5]
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