
Quadrocopter Ball Juggling

Mark Müller, Sergei Lupashin and Raffaello D’Andrea

Abstract— This paper presents a method allowing a quadro-
copter with a rigidly attached racket to hit a ball towards a
target. An algorithm is developed to generate an open loop
trajectory guiding the vehicle to a predicted impact point – the
prediction is done by integrating forward the current position
and velocity estimates from a Kalman filter. By examining
the ball and vehicle trajectories before and after impact,
the system estimates the ball’s drag coefficient, the racket’s
coefficient of restitution and an aiming bias. These estimates
are then fed back into the system’s aiming algorithm to improve
future performance. The algorithms are implemented for three
different experiments: a single quadrocopter returning balls
thrown by a human; two quadrocopters co-operatively juggling
a ball back-and-forth; and a single quadrocopter attempting to
juggle a ball on its own. Performance is demonstrated in the
Flying Machine Arena at the ETH Zurich.

I. I NTRODUCTION

In this paper we describe a system that allows a quadro-
copter to hit a ping-pong ball towards a target using an
attached racket. This enables a single quadrocopter to juggle
a ball, multiple quadrocopters to hit a ball back-and-forth,
or a human and quadrocopter to play together. The term
“juggling” here is used in the same sense as in soccer, where
one tries to keep the ball in the air for as long as possible.
A useful way of visualising the problem setup is to think of
a “flying racket” (see Fig. 1) hitting a ball.

Hitting a ball is a visually engaging problem, with which
everyone is acquainted, and any casual bystander can im-
mediately judge how successful a system is. This problem
involves various aspects: deciding when and where to hit the
ball, and to what target; analysing the dynamics of the ball
flight, ball/racket impact and the dynamics of the quadro-
copter; generating a trajectory moving the quadrocopter to
a state which hits the ball as desired, while respecting the
dynamics of the quadrocopter; and estimating the state of the
ball accurately enough to allow for useful predictions.

Robotic juggling and ball sports are popular research
topics, and are seen as challenging dexterous tasks. Examples
include robotic table tennis, from simplified ping-pong [1]
to teaching a robotic arm to return a table tennis ball [2].
Other interesting cases are human/robot volleyball [3]; robot
basketball [4] and the RoboCup robotic soccer championship
[5]. An example of juggling per se can be found in [6], with
another interesting case being “blind” juggling [7].

Due to their agility, and mechanical simplicity, quadro-
copters have become a popular subject of research. A few
examples of challenging tasks executed by quadrocopters are:
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dancing [8]; balancing an inverted pendulum [9]; aggressive
manoeuvres such as flight through windows and perching
[10]; and cooperative load-carrying [11].

The problem of hitting a ball also yields opportunities
for exploring learning and adaptation: presented here are
strategies to identify the drag properties of the ball, the
racket’s coefficient of restitution, and a strategy to compen-
sate for aiming errors, allowing the system to improve its
performance over time. This provides a significant boost in
performance, but only represents an initial step at system-
wide learning. We believe that this system, and systems like
it, provide strong motivation to experiment with automatic
learning in semi-constrained, dynamic environments.

The paper is organised as follows: in Section II we
derive equations to model quadrocopter flight, ball flight
and ball/racket impact. In Section III we present algorithms
to estimate the ball state and predict the ball’s trajectory,
estimate the racket’s coefficient of restitution and estimate
an aiming bias. Then an algorithm to generate a trajectory
for the quadrocopter is given in Section IV, followed by
a discussion on the system architecture and experimental
setup in Section V. Results from experiments are presented
in Section VI. We attempt to explain why the system fails
on occasion in Section VII and conclude in Section VIII.

II. DYNAMICS

We model the quadrocopter with three inputs (refer to
Fig. 2): the angular accelerationsq̇ and ṗ, taken respectively
about the vehicle’sx andy axes, and the mass-normalised
collective thrust,f . The thrust points along the racket normal,
n. The attitude of the quadrocopter is expressed using the
z-y-x Euler angles, rotating from the inertial frame to the

Fig. 1. A quadrocopter with attached badminton racket head. Three retro-
reflective markers are attached to the vehicle, with which thevehicle pose
can be determined (here, two are partially obscured by the racket). The ball,
shown lying on the racket, is also wrapped in the retro-reflective tape to be
visible to the motion capture system.
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Fig. 2. Dynamics of a quadrocopter, acting under inputs of thrust (f ), and
two angular accelerationṡq and ṗ; and under the influence of gravityg.
The base vectorsx, y andz of the inertial reference frame are also shown.

body-fixed frame by yaw (ψ) first, then pitch (θ) and finally
by roll (φ) – for simplicity, throughout this paper the yaw
is assumed to be controlled to zero by a separate controller.
Using the two remaining angles, we can express the racket
normal in the inertial frame as

nnl = (sin θ cosφ, − sinφ, cos θ cosφ) . (1)

In our analysis we assume that the pitch and roll angles
remain small, and obtainsin θ ≈ θ and cos θ ≈ 1 to first
order (likewise forφ). Furthermore, under this assumption,
we can take the Euler angle accelerationsθ̈ and φ̈ as equal
to the vehicle’s angular accelerations about itsx andy axes.

The equation of motion for the quadrocopter is

s̈r = nf + g (2)

θ̈ = q̇ (3)

φ̈ = ṗ (4)

where
n = (θ, −φ, 1) , g = (0, 0, −g) (5)

andsr to denotes the quadrocopter’s position in the inertial
reference frame, anḋsr and s̈r its velocity and acceleration,
respectively.

The ball’s flight is modelled as a point mass under the
influence of gravity and aerodynamic drag, and we ignore
spin. For a more detailed treatment of table tennis ball
flight and impact dynamics, see [12]. We model drag as
proportional to the ball’s speed squared, with proportionality
coefficientKD. Denoting the ball’s position in space assb,
we can write the ball’s equation of motion as

s̈b = g −KD‖ṡb‖ṡb (6)

where‖·‖ refers to the Euclidean norm.
The impact between the racket and the ball is modelled

as an impulse acting in the direction of the racket normal.
The “efficiency” of the impact is captured by the coefficient
of restitution,β ∈ [0, 1]. We defineβ as the ratio of the
components of the ball’s pre- and post-impact velocities (ṡ−b
and ṡ+b , respectively) in the direction of the racket normal,
n,

β = −
(

ṡ+b
)T

n
(

ṡ−b
)T

n
for ṡr = 0, (7)

derived for simplicity for the case of a fixed racket.
We assume that the mass of the vehicle/racket is much

larger than that of the ball (meaning that the racket velocity
remains unaffected by the impact) and that the contribution
of the racket’s angular velocity to the post-impact ball state
is negligible. This is because we intend to hit the ball at
the racket’s centre, which approximately corresponds to the
vehicle’s centre of rotation. Then the ball’s velocity after
impact with a moving racket is

ṡ+b = ṡ−b − (1 + β)
(

(

ṡ−b − ṡr
)T

n
)

n. (8)

Experiments showed that the ball’s velocity tangential to the
racket face does change during impact, but this change is
very hard to predict and is therefore neglected.

III. E STIMATION

In this section we describe a Kalman filter to estimate
the ball’s state, and strategies for estimating the ball’s drag
coefficient, the coefficient of restitution of the racket, and an
aiming bias. The values for coefficient of restitution and drag
are estimated online, rather than measured and stored, since
individual balls show large differences in behaviour. These
estimates are used for prediction and aiming of the ball as
used in Section IV.

A. Ball state

We define the ball state as

xb = (sb, ṡb) . (9)

If we ignore drag, we can write the evolution of the ball state
during free flight as a continuous time linear system:

ẋb = Acxb +Bc, (10)

where

Ac =

[

03×3 I3×3

03×3 03×3

]

, Bc =

[

03×1

g

]

. (11)

This we can convert to a discrete time system with step
size τk, where xb[k] := xb(tk) is the state at timetk.
The process noisew[k] is modelled as acting only on the
velocity components to capture unmodelled accelerations.
The measurement noisev[k] is assumed to act equally in
all directions upon the measurement,z[k]. Then

xb[k + 1] = A[k]xb[k] +B[k] +w[k] (12)

z[k] = H[k]xb[k] + v[k], (13)

where

A[k] =

[

I3×3 τk I3×3

03×3 I3×3

]

(14)

B[k] =
[

0 0 − 1

2
gτ2k 0 0 −gτk

]T
(15)

H[k] =
[

I3×3 03×3

]

. (16)

An estimate of the ball state (x̂b[k]) can now be calculated
using a discrete time Kalman filter [13]. We modify the stan-
dard linear Kalman filter formulation by including drag in the
state prediction step. We introduce an intermediate position



and velocity for integration,r(t) and ṙ(t), respectively. By
using the estimate at timetk as initial value,r and ṙ can be
evaluated by numerical integration, so that

(r (tk) , ṙ (tk)) := x̂b[k] (17)

andr(t), ṙ(t) satisfy (6).
The state prediction for the Kalman filter is then simply

r(tk + τk) and ṙ(tk + τk). For the variance propagation,
and for the measurement update of both the state and the
variances, the usual linear Kalman filter equations are used.

Taking the time derivative of the ball’s specific mechanical
energyEb = 1

2
‖ṡb‖2 + gT sb, yields the specific power

extracted from the system by the drag force,

Ėb = −KD‖ṡb‖3. (18)

Using the ball state estimatêxb[k] from the ball state
filter to calculate the ball’s speed̄v[k], the above can be
approximated as a measurementK̃D[k],

v̄[k] =

√

x̂b[k]T
[

03×3 03×3

03×3 I3×3

]

x̂b[k] (19)

Ē[k] =
1

2
(v̄[k])

2
+

[

gT 01×3

]

x̂b[k] (20)

K̃D[k] = −
(

Ē[k]− Ē[k − 1]
)

τk
(

1

2
(v̄[k] + v̄[k − 1])

)3
, (21)

where Ē[k] is the estimate of the ball’s mechanical energy
at timetk, and we use a two step average of the ball’s speed.

These measurements can now be used to form an estimate
of the drag value (̂KD[k]) using a recursive least squares

(RLS) estimator [14]. We definePD[k] = var
(

K̂D[k]
)

as

the estimate variance, andRD[k] as the measurement noise
variance (from a nominal varianceRD,0, weighted by a
two-step average of the ball’s speed). We also introduce an
intermediary gainCD[k].

RD[k] =
RD,0

(

1

2
(v̄[k] + v̄[k − 1])

)3
(22)

CD[k] =
PD[k − 1]

PD[k − 1] +RD[k]
(23)

K̂D[k] = K̂D[k − 1] + CD[k]
(

K̃D[k]− K̂D[k − 1]
)

(24)

PD[k] =
PD[k − 1]RD[k]

PD[k − 1] +RD[k]
(25)

We disallow measurements below some minimum height
to ensure we only use measurements taken when the ball is
in flight (i.e. not being handled, or hit by the racket). To
protect against numerical issues, we disallow measurements
when the ball’s speed approaches zero.

For longer term predictions of the ball state, we numeri-
cally integrate forward the ball state using (6). This is used
to predict the time of impact and the ball state at impact, as
well as during aiming, to evaluate possible post-impact ball
velocities. For such predictions an accurate estimate of the
drag coefficient is crucial.

B. Racket coefficient of restitution

By examining the ball and vehicle state estimates before
and after an impact, we can estimate the racket’s coefficient
of restitution using (8). These estimates can be combined to
form an estimatêβ, again using an RLS estimator, similar to
(22) - (25), but with the measurement noise variance taken
as constant.

We only allow coefficient of restitution measurements
lying in the range[0.5, 1]. The lower bound allows us to
identify “failed” impacts, for example if the ball hits the
racket frame, or the propellers. The value of 0.5 was chosen
by examining experimental data.

C. Aiming bias

We notice that with the preceding, the system still shows
an aiming bias, defined as the difference between the target
position and where the ball crossed the target height. The
system attempts to identify where it should aim so that
the ball hits the target point, by using two separate RLS
estimators, one each for thex and y components of the
aiming bias. This allows us to compensate for systematic
errors, such as a misaligned racket.

IV. T RAJECTORY GENERATION

Here we derive an open-loop trajectory to move the
quadrocopter from some initial state to an impact state, in the
time remaining until impact. We define impact as when the
ball drops through some user-defined impact height. From
the ball estimator, we have an estimate of time remaining
until impact (T ), and the ball’s velocity at this time.

To calculate the required ball velocity after impact, we
note that the post-impact trajectory has to start at the impact
point, pass through some maximum height, and reach the
aiming point. These requirements define a unique ball trajec-
tory. We note that, by (6), the ball always moves in a vertical
plane, implying that we need only solve for horizontal and
vertical components of the post-impact ball velocity (vh and
vv, respectively).

We can solve for these using a two-dimensional gradient
descent search, minimising the cost functionC (vh, vv),
composed of a height error and a lateral distance error. We
denote the achieved maximum height byhm(vh, vv), and the
desired maximum ball height byhm,d. Furthermore, we use
the distancel (vh, vv) at which the ball passes through the
target height, and the desired distanceld.

C (vh, vv) = (hm (vh, vv)− hm,d)
2

+ (l (vh, vv)− ld)
2

(26)

The functionshm (vh, vv) andl (vh, vv) are evaluated by ex-
amining the trajectories resulting from numerical integration
of (6).

Using the ball’s pre- and post-impact velocities, we can
solve for the required racket state at impact using (8),
yielding

ndes(T ) =
ṡ−b − ṡ+b

‖ṡ−b − ṡ+b ‖
(27)



V⊥,des := (ṡr(T ))
Tn =

1

1 + β
(βṡ−b + ṡ+b )

Tn, (28)

whereV⊥,des is the desired racket speed in the direction of
the desired racket normal (ndes) at impact. Because of how
we mount the racket (see Fig. 1), it follows that the racket
state is simply that of the quadrocopter, displaced in the body
z-axis by some offset.

There are a total of six constraints we need to meet at
impact. The desired pitch and roll angles can be derived
from the desired racket normal at impact (ndes(T )) using
(1). We also need to achieve the normal speedV⊥,des, and
the quadrocopter has to be at the impact point, at timeT .

Using (2) to describe the quadrocopter dynamics under
the small angle assumption, we have three inputs: the mass-
normalised thrustf , and the angular accelerationsq̇ and ṗ.
Noting that we need to solve for six equations, we assume
affine inputs of the form

f(t) = Af t+Bf (29)

q̇(t) = Aθt+Bθ (30)

ṗ(t) = Aφt+Bφ. (31)

This form is inspired by the analysis of a linear one-
dimensional system where the ball and racket are constrained
along thez axis, with the single control input being the
racket’s accelerationf . An affine input minimises the me-
chanical energy expended by the control effort. (29)-(31) are
simple enough to yield closed-form solution, while providing
the necessary degrees of freedom. By substituting these into
(2), and integrating, we can write the quadrocopter’s position
and velocity as polynomials in time. We substitute for the
six requirements at impact, and substitute the integration
constants with the initial conditions, to yield six equations
in six unknowns (the input coefficients). This system of
equations can be reduced to a single fourth order equation in
one unknown, which can be solved for in closed form (the
full derivation is made available online on the first author’s
website).

For a real polynomial of order four, we can have either no,
two, or four real solutions. In case of multiple real solutions,
we note that we wish to avoid large inputs to not violate the
small-angle assumption, and select a solution minimising:

A2
f +A2

θ +A2
φ. (32)

Because of the simple relationships between the related affine
constants, small values forAf , Aθ andAφ imply smallBf ,
Bθ andBφ, respectively (refer to the online derivation).

We have now solved for open-loop inputs which move
the system from some initial state to the state needed to
hit the ball, in the time until impact. This trajectory will
satisfy the quadrocopter equation of motion under the small-
angle assumption, but it does not take actuator saturation into
account. By saturation we mean that the individual motor
commands will exceed what is possible, for example when
the collective thrust exceeds the vehicle’s achievable limits,
typically at the beginning or end of the trajectory.

This open-loop trajectory is sent to a near-hover feedback
controller, similar to that described in [15]. The controller
runs on position feedback, and we use the calculated desired
velocity, acceleration and body rates as feed-forward terms,
to generate the four individual motor commands.

V. EXPERIMENTAL SETUP

The preceding were coded in C++, and implemented in
the Flying Machine Arena (FMA) at the ETH Zurich. The
algorithm is shown schematically in Fig. 3, and can be
broken into the following components:

• The ball estimatoris responsible for finding the ball in
the space, estimating its state, and then predicting when
and where impact will occur.

• The trajectory generatorcalculates the desired quadro-
copter state at impact, and generates a set of inputs to
move the vehicle to that state at impact time.

• Impact identificationallows the system to use infor-
mation from previous impacts to improve the system
performance.

• The generated trajectory, and commands, are now sent
to the feedback controller.

It is important to note here that the trajectory generator is
invoked in two places – when a new trajectory is initialised,
and as information about the impact becomes available.
At initialisation, an initial state for the trajectory is fixed,
which remains unchanged until the next impact. As the
impact prediction improves, the desired end state of the
quadrocopter is updated, and the equations are solved to
generate a trajectory from the fixed initial condition, to the
updated impact condition.

The resulting trajectory works well when moving over
small lateral distances, but larger lateral distances imply
larger angular deviations, violating our assumption of small
θ and φ. Therefore, we use two slightly different imple-
mentations of the trajectory generator, differing in how
the initial state is chosen. In the “continuous” case, we
use the quadrocopter’s state at the start of the manoeuvre,
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Fig. 3. Algorithm layout: the inner loop is executed continuously as new
information becomes available, and the outer loop is only executed once
per impact.



meaning that nominally the commands to the vehicle are
continuous. This mode works best when moving over small
lateral distances. The second, “discontinuous”, mode is used
when we know that we have more time until intercept, and
works better when moving over larger distances. In this case
we generate a nominal trajectory, starting some pre-defined
distance below the predicted impact point, at zero velocity.
In this mode, since the desired trajectory does not start from
the quadrocopter’s true initial state, the bulk of the initial
control effort is due to the feedback controller bringing the
vehicle onto the nominal path. The assumption is that by the
time of impact, the vehicle will be on the desired trajectory,
flying primarily on feed-forward commands.

The continuous mode is used for single quadrocopter
juggling, while the discontinuous mode is used in the cases
of multiple quadrocopter play, or quadrocopter-human play.

The FMA is a platform for design and validation of
autonomous aerial systems and consists of a large (10m ×
10m× 10m) motion capture volume and a fleet of quadro-
copters. The vehicles are sent commands for the three
body rates and the collective thrust at67Hz. An on-board
controller uses rate gyro measurements to generate motor
thrust commands at800Hz. The vehicles are capable of
following angular rate commands of up to1900 ◦/s. More
details about the Flying Machine Arena can be found in [8],
[9] and [16].

Each vehicle is equipped with three retro-reflective motion
capture markers; this allows the motion capture system to
calculate the 6DOF vehicle pose for each frame, provided at
200Hz. Any markers not associated with vehicles are treated
as point objects – the ping-pong ball is tracked as one such
object. The FMA is equipped with 8 cameras; only 3 are
required to see a marker to compute its position, providing a
high degree of tracking redundancy even when markers are
partially occluded, e.g. by a racket.

We use standard40mm diameter table tennis balls,
wrapped in retro-reflective tape to be visible to the motion
capture system. The ball is hit using a badminton racket
head rigidly mounted on the vehicles – as shown in Fig.
1, the racket is mounted by placing the centre above the
quadrocopter centre of mass, and aligning the racket normal
with the quadrocopterz-axis. This minimises the effects of
the angular velocity of the quadrocopter, and is mechanically
convenient.

VI. EXPERIMENTAL RESULTS

Here we present results from three experiments. In each
case the quadrocopter is attempting to hit the ball at a given
intercept height, and maintain a specified maximum ball
height. This maximum height was chosen by experiment as
2m above the impact point.

1) Returning a throw : a single quadrocopter attempts
return a thrown ball. This was used to demonstrate the
effects of parameter identification.

2) Cooperative juggling: two quadrocopters attempt to
hit a ball to one another – each quadrocopter has as
target the other’s starting position.
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Fig. 4. Drag estimator outputs while a vehicle returns throws, showing
a histogram of the individual drag measurements, and the evolution of the
drag estimate. The measurements have as mean0.078m−1, and standard
deviation0.14m−1. The red circles on the estimate evolution plot indicate
when the ball was hit by the vehicle.

3) Solo juggling: a quadrocopter attempts to juggle a ball
on its own, and keep the impact location fixed.

A video demonstrating these experiments is available online
on the first author’s website.

A. Returning a throw

1) Drag estimation:Fig. 4 shows that the drag estimate
quickly converges to a value of approximately0.079m−1,
and that the estimate is unaffected by the user handling the
ball, quadrocopter impacts and impact with the ground.

As validation, we can estimate the aerodynamic drag using
the usualFD = 1

2
ρ‖ṡb‖2CDAball = mballKD‖ṡb‖2, from

which we have
KD =

ρAballCD

2mball

. (33)

Taking ρ = 1.2 kg/m3, andCD = 0.4 [17], Aball = πr2 =
1.257×10−3 m2 and a mass ofmball = 5×10−3 kg, we get
KDcalc

= 0.06m−1. This is in close agreement the estimate
shown in Fig. 4.

2) Racket estimation:The racket estimator generates esti-
mates of the racket’s coefficient of restitutionβ̂. Fig. 5 shows
the coefficient of restitution estimate settling at a value of
β̂ ≈ 0.76. Interesting to note is how the measurements vary
with position on the racket, showing a sweet spot near the
centre of the racket.

The distribution of the impact points on the racket face are
an indication of the system’s ability to predict the impact
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point and time, and steer the vehicle to this impact point
at the impact time. The reference frame used here is such
that the racket facex andy align with the inertialx andy,
respectively, at zero pitch and roll angles.

3) Aiming: The aiming algorithm compares the point at
which the ball actually lands to the point the quadrocopter
wanted to hit, and attempts to shift the aiming point such
that the ball lands on the target after the next impact.

The results of the aiming estimator are shown in Fig. 6,
where we compare the system performance with and without
parameter identification. I.e. on the right the system identifies
the ball’s drag characteristics, the racket’s coefficient of
restitution, and the aiming bias. The aiming bias is estimated
at 760mm in x and270mm in y.

The mean error is reduced from1.4m without identifica-
tion (for 58 hits), to a mean (over 15 hits) of47mm after
the estimates have settled. We also notice that the standard
deviation reduces slightly with identification – this is likely
due to the way the experiment is conducted: if the ball is
returned well, the throws will all start from similar locations.
However, if the returns are poor and the user has to move
to pick up the ball, we can expect a greater variation in the
throws, and the resulting returns will show a higher standard
deviation.

B. Cooperative juggling

The system can also be run with two quadrocopters
playing with one another, set up such that each quadrocopter
starts at its opponent’s target. In all other respects the
scenario is the same as when a human is throwing the ball
for a quadrocopter to return.

In Fig. 7 a rally between two quadrocopters is shown,
where the ball is kept in the air for 17 consecutive hits. This
was after sufficient time had passed for the estimates to settle.
The figure shows that the quadrocopters manage to sustain
the desired maximum ball height, and keep the impact point
approximately at the desiredx± 1.5m, y = 0.

The rally was part of a “game” between the two vehicles
which lasted for 8 minutes with 160 successful hits over
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24 rallies. The distribution of the rally lengths is shown in
Fig. 9. On the histogram, it is interesting to note that the
system appears to have a bi-modal distribution, where the
ball is either dropped after few hits, or the system manages
to sustain the rally for a longer time.

The longest rally ever achieved on the system lasted almost
140 hits, but was not recorded.

C. Solo juggling

During single quadrocopter juggling, the vehicle has the
least amount of time between consecutive impacts. Fur-
thermore, at the start of each trajectory (directly after the
previous impact), the quadrocopter typically has a large
positive vertical speed, and possibly large angles, lateral
velocity and angular rates. This makes solo juggling the
most challenging task – refer to Section VII for more detail.
One juggling rally of seven consecutive hits is shown in
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Fig. 8. A single quadrocopter juggling a ball 7 times. The blueline is
the ball trajectory, while the solid red line is the vehicle’s actual position,
and the broken red line the desired position. The dashed linein z is the
desired maximum ball height. Note how the system struggles to maintain
this height, see Fig. 10 and Section VII for details.
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Fig. 9. Histograms showing the system performance when two vehicles
hit a ball back-and-forth (left) and when a single vehicle juggles on its own
(right). Interesting to note is the bi-modal nature of the distribution when
two vehicles play together – where the ball is either droppedearly on, or
the system manages to sustain a longer rally.

Fig. 8, with a detail of the vehicle’sz trajectory in Fig.
10, also showing the motor commands. On Fig. 8 we notice
that the system cannot maintain the desired impact point at
x = y = 0.

In Fig. 9 a histogram of a single vehicle’s juggling
performance is shown. The data shows 27 juggling “rallies”,
lasting an average of 3 hits.

The longest juggling rally ever achieved by the system
lasted 14 hits, but was again not recorded.

VII. FAILURE ANALYSIS

We identify three main causes for the system failing to
hit the ball: input (motor) saturation, unpredictable bouncing
and tracking errors.

A. Input saturation

The trajectory generator does not take input saturation into
account, and the generated trajectory might be infeasible.For
example, the commanded initial downwards acceleration is
often in excess ofg, which is unachievable on this system,
since each propeller can only produce positive thrust and
some thrust is needed to maintain vehicle attitude.

In Fig. 10 we can see the effect of motor saturation.
Taking the thrust produced by a propeller as proportional
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Fig. 10. Motor saturation during solo juggling. On top is shown the system
performance when following a commanded trajectory (shown for height
only), and below the corresponding motor speed commands, each motor a
different colour. The commands are internal, but are linearlyrelated to motor
speed. Clearly visible is that after generating the new trajectory, the motor
commands are too large, leading to insufficient downwards acceleration. For
an affine acceleration, we expect monotonously increasing motor commands.

to its rotational speed squared, we expect a speed command
which looks like a parabola turned on its side. During the
latter stages of the trajectory, we can see this shape, but
it is initially saturated. Some motor commands are at the
minimum, and the remainder show much larger commands
than expected. These commands can be understood as the
feedback controller regulating the vehicle’s attitude. Since
the vehicle’s motors can only produce upwards thrust, this
has the undesired consequence of producing a net upward
force and reducing the vehicle’s potential for downwards
acceleration.

B. Unpredictable impacts

Similar to how we measure the racket’s coefficient of
restitution in Section III, we can measure the orientation
of the racket’s normal for each impact. We notice that this
normal deviates from the expected vehiclez-axis – this
deviation will cause the ball’s bounce to be in a slightly
different direction from the expected, in turn leading to
aiming errors. A histogram of such deviation measurements
is shown in Fig. 11, showing measurements made during the
solo juggling experiment of Section VI.

To quantify the effects of such a deflection, we analyse
a single quadrocopter during solo juggling, maintaining a
maximum ball heighthmax above the impact point. For
simplicity, we assume zero drag. From the conservation of
mechanical energy, such a ball will return to the impact
height at ṡ−b =

(

0, 0, −
√
2ghmax

)

. To return the ball to
hmax, we want ṡ+b = −ṡ−b , and noting that the nominal
racket normal isn = (0, 0, 1), we can calculate the required
racket speed using (8) as:

ṡr =
β − 1

β + 1
ṡ−b . (34)

If the true racket normal (ndefl) now deviates from the
expected by an angleγ (for convenience taken as a rotation
about they axis), we can calculate the actual post-impact
ball velocity (̇s+b,defl), again using (8):

ndefl = (sin γ, 0, cos γ) (35)

ṡ+b,defl =
√

2ghmax ·
(

sin 2γ, 0, 2 cos2 γ − 1
)

(36)
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and that expected, for a quadrocopter juggling a ball on its own. On the
right is a detail showing the uneven surface of the racket, and the shape of
the ball. The deflection was measured, and the shown horizontal deflection
derived therefrom – refer to the text for details.



We can now calculate the horizontal distance the ball
moves before returning to the impact height (∆x), yielding:

∆x = 4hmax sin 2γ
(

2 cos2 γ − 1
)

(37)

This equation was used to generate the lower abscissa label
in Fig. 11, for a vehicle juggling a ball to a maximum height
hmax = 2m. We can see a5◦ deviation leads to a horizontal
error of1.4m, which would likely be too large for the vehicle
to successfully intercept again.

C. Tracking errors

Due to measurement errors and external disturbances, we
expect that the vehicle will not achieve a commanded state
perfectly. Generally, this is difficult to quantify, but in Fig.
12 the position errors are shown for a vehicle hovering. Here
we can see that the vehicle’s position error has a mean of
28mm – from experience we know that we need to hit a
ball within about50mm of the racket centre.

The tracking errors during aggressive flight are much more
difficult to analyse, but can be expected to be at least as large
as the errors during hover.

VIII. C ONCLUSION

In this paper we have presented a system for a quadro-
copter to hit a ball towards a target. This was done by
analysing simple models of the ball flight, racket/ball inter-
action and quadrocopter flight. A Kalman filter was imple-
mented to estimate the ball state, which is needed to predict
the impact conditions. Using the impact conditions, the
desired quadrocopter state at impact can be calculated, which
we combine with affine inputs to move the quadrocopter from
an arbitrary initial state to the desired state at impact, under
the assumption that the angles remain small.

Strategies were implemented which allow the system to
estimate the ball’s drag coefficient and the racket’s coefficient
of restitution, and learn an aiming bias. The combination has
been shown to improve the system’s performance hitting a
ball at a target.

The algorithm was implemented for three different exper-
iments: a single vehicle returning a ball thrown by a human,
two vehicles hitting a ball back-and-forth, and a single vehi-
cle attempting to juggle on its own. The performance of the
system in each case has been shown, with the first being used
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Fig. 12. Total position errors while commanding the vehicle tohover at
a fixed location. The blue line shows the distance that the quadrocopter
is from the commanded point and the red shows the mean error over this
time. The racket has a usable radius of approximately50mm, shown by
the green line.

to demonstrate the effects of the parameter identification.
The juggling performance for two vehicles cooperating was
shown to be much better than that of one vehicle on its own,
mostly because the vehicles have more time to respond, and
start each trajectory in a more favourable position.

The system offers various possibilities for improvement.
One can imagine the hitting action encoded as a motion
primitive, described by a simple set of parameters which the
system can learn to improve so that the resulting motion is
closer to the desired (similar to the flips of [16]). Further-
more, a game can be created, like the robot ping-pong of
[1], where different strategies (or even completely different
vehicles) can be compared in a competitive environment.
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