
Performing Aggressive Maneuvers using Iterative Learning Control

Oliver Purwin
Sibley School of Mechanical and Aerospace Engineering

Cornell University
Ithaca, NY 14853, USA
op24@cornell.edu

Raffaello D’Andrea
Department of Mechanical and Process Engineering

ETH Zürich
Zürich, Switzerland
rdandrea@ethz.ch

Abstract— This paper presents an algorithm to iteratively
drive a system quickly from one state to another. A simple
model which captures the essential features of the system is used
to compute the reference trajectory as the solution of an optimal
control problem. Based on a lifted domain description of that
same model an iterative learning controller is synthesized by
solving a linear least-squares problem. The non-causality of the
approach makes it possible to anticipate recurring disturbances.
Computational requirements are modest, allowing controller
update in real-time. The experience gained from successful
maneuvers can be used to significantly reduce transients when
performing similar motions. The algorithm is successfully
applied to a real quadrotor unmanned aerial vehicle. The results
are presented and discussed.

I. INTRODUCTION

With the increasing popularity of autonomous systems
there arises a need to take advantage of their full capabilities.
One approach to increase the performance is to identify the
system well and apply advanced control methods. However,
this possibly involves extensive system identification efforts.
A different paradigm is to put the complexity in the software.
A relatively simple model in conjunction with an adaptive
algorithm and a well-chosen set of sensors allows each ve-
hicle to experimentally determine how to perform a difficult
maneuver and to compensate for individual differences in the
system dynamics.

One data-based approach is called iterative learning con-
trol (ILC). The idea behind ILC is that the performance of
a system executing the same kind of motion repeatedly can
be improved by learning from previous executions. Given a
desired output signal ILC algorithms experimentally deter-
mine an open-loop input signal which approximately inverts
the system dynamics and yields the desired output. Bristow
et al. [1] provide a survey of different design techniques for
ILC.

Chen and Moore [2] present an approach based on local
symmetrical double-integration of the feedback signal and
apply it to a simulated omnidirectional ground vehicle.
Ghosh and Paden [3] show an approach based on approx-
imate inversion of the system dynamics. Chin et al. [4]
merge a model predictive controller [5] with an ILC [6]. The
real-time feedback component of this approach is intended
to reject non-repetitive noise while the ILC adjusts to the
repetitive disturbance. Cho et al. [7] put this approach in a
state-space framework.

Non-causal control laws allow ILC to preemptively com-
pensate for disturbances or model uncertainties which are
constant from trial to trial. Formulating the problem and
controller in the lifted domain is a natural way of exploiting
the repetitive nature of the experiments, made viable by
advancements in computer processors and memory. Rice and
Verhaegen [8] present a structured unified approach to ILC
synthesis based on the lifted state-space description of the
plant/controller system.

In practice ILC have been applied to repetitive tasks
performed by stationary systems, such as wafer stages [9],
chemical reactors [10], or industrial robots [11]. Applications
to autonomous vehicles are more rare.

This paper presents a lifted domain ILC algorithm which
enables a system to perform an aggressive motion, i.e.
drive the system from one state to another. Aggressive in
this context characterizes a maneuver that takes place in
the nonlinear regime of the system and/or close to the
state or input constraints. This maneuver would be hard to
tune by hand or would require very accurate knowledge of
the underlying system. Instead, the featured algorithm only
requires a comparatively simple model and initial guess for
the input. In case of an unstable system it is assumed that a
stabilizing controller is available.

The algorithm is intended for autonomous vehicles. How-
ever, it can be applied to a wide range of different dy-
namic systems without change. The controller update can
be executed online with modest computational resources. If
a particular maneuver is performed satisfactorily the gained
knowledge can be utilized to perform a maneuver which is
similar to the one just learned. This can reduce transients
and improve convergence.

The first step of the algorithm is the computation of the
reference trajectory and input by solving an optimal control
problem. The nonlinear model is then linearized about the
reference and discretized resulting in a discrete time linear
time-varying (LTV) system. The lifted description of this
LTV system defines the input-output relationship of the
system for one complete experimental run in form of a single
matrix. After performing an experiment the results are stored
and compared with the ideal trajectory, yielding an error
vector. Solving a linear least-squares (LLS) problem based on
the lifted LTV system and the error vector yields the change
in the input signal for the next trial. The algorithm terminates

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 1731

if the norm of the error vector is sufficiently small.
The algorithm is successfully applied to an unmanned

aerial vehicle (UAV). After stabilization the UAV is a
marginally stable system which requires accurate feedfor-
ward inputs to track a reference satisfactorily.

The rest of the paper is organized as follows: Section
II presents the dynamics of the UAV used for algorithm
derivation. Section III describes the algorithm to perform
a single maneuver. The learned maneuver is extended in
Section IV. Section V shows the successful application of the
algorithm to the UAV, and Section VI provides a conclusion.

II. VEHICLE DYNAMICS

Fig. 1. Quadrotor Unmanned Aerial Vehicle

The presented algorithm is being applied to the quadrotor
UAV shown in Figure 1. The dynamics of the vehicle are
unstable so to perform experiments with the airborne vehicle
an initial controller is required which stabilizes the UAV in
hover before and after an ILC trial. A PD controller has been
synthesized based on the linearized six degree of freedom
(DOF) rigid body dynamics. In the following this controller
will be referred to as hover controller.

The maneuver that will be covered in the subsequent
sections of the paper consists of a sideways motion in the xz
plane, see Figure 2 (left). This reduces the dynamics to two-
dimensional space and three DOF without loss of generality.
A motion in 3D involves a larger set of equations but is
conceptually identical. Figure 2 (right) shows the free-body
diagram of the equivalent 2D vehicle. The global frame of
reference (FOR) is denoted by x, z, and θ. Thrust vectors
f0 and f1 extend from the centers of the propellers and are
offset from the vertical vehicle axis by θδ . The distances
between thrust and center of mass are denoted by l0 and l1.
Note that gravity g acts in positive z direction. The vehicle
mass is denoted by m, the moment of inertia by j.

As mentioned before, any kind of more sophisticated
dynamics such as aerodynamics or flexible structures are
neglected for the sake of simplicity. Taking the force and
moment balances yields the equations of motion of the rigid
body in the global FOR: ẍ

z̈

θ̈

 =

 − 1
m sin (θ + θδ)(f0 + f1)

− 1
m cos (θ + θδ)(f0 + f1) + g

1
j (f0l0 − f1l1)

 (1)

Fig. 2. UAV Top Down View (left), Free-body Diagram (right)

To stabilize the system and reduce the impact of nonlin-
earities a control loop is implemented for the rotation, such
that the response of θ is that of a second order system

θ̈ = −2ζωnθ̇ − ω2
n(θ − θc) (2)

= kθ̇ θ̇ + kθ(θ − θc) (3)

with damping ratio ζ, natural frequency ωn, and com-
manded angle θc. The parameters ζ and ωn are selected
to match the system response of the closed loop system
with the hover controller in place. This guarantees stability
and adequate performance of the θ stabilization in hover.
Combining the thrust inputs f0 and f1 to

fa = f0 + f1 (4)

the stabilized equations of motion of the vehicle then become ẍ
z̈

θ̈

 =

 − 1
m sin (θ + θδ)fa

− 1
m cos (θ + θδ)fa + g

kθ̇ θ̇ + kθ(θ − θc)

 = f(ρ, q, u) (5)

where fa and θc are the new system inputs and the state q(t)
and the parameter vector ρ are defined as

q(t) =
[
x(t) z(t) ẋ(t) ż(t) θ(t) θ̇(t)

]T
(6)

ρ =
[
m l0 l1 θδ

]T
(7)

For specifics about the selection of the parameter vector see
Section IV.

III. PERFORMING A MANEUVER

The objective of the presented algorithm is to perform
a maneuver. For the purpose of this paper the initial state
q0 and target state qf are both equilibria, i.e. the vehicle is
hovering with q̇ = 0. Note that this is not a requirement of
the algorithm. However, the advantages are better controlled
initial conditions and increased safety, since the vehicle is
not moving in q0 and qf and therefore not endangering
itself or the environment. Performing a maneuver consists
of two parts: generation of the reference trajectory qd(t) and
learning how to track it.

1732

A. Generation of a reference trajectory

The reference trajectory qd(t) is the solution of an optimal
control problem (OCP): compute the minimum time solution

(qd(t), ud,temp(t)), ud,temp(t) = [f0,d(t) f1,d(t)]
T (8)

which drives the system (1) from the initial state q(0) = q0
to the final state q(tf) = qf , subject to constraints on the
control effort

|fi(t)| ≤ fi,max, |ḟi(t)| ≤ ḟi,max (9)

with the maximum thrust fi,max and maximum rate of
change of thrust ḟi,max dependent on the used mo-
tor/battery/propeller combination. For the purpose of this pa-
per the OCP is solved using RIOTS [12], an optimal control
toolbox written in Matlab and C. The above formulation of
the OCP has been chosen for simplicity in the expressions of
the constraints, which benefits the numerical solution process
of the OCP. However, in subsequent parts of the algorithm
the inputs according to system (5) are being used. Therefore
the optimal inputs ud,temp(t) have to be transformed to
ud(t) = [fa,d(t) θc,d(t)]

T , such that ud(t) applied to (5)
yields qd(t). Substituting (3) into the third line of (1) yields

1
j

(f0l0 − f1l1) = kθ̇ θ̇ + kθ(θ − θc) (10)

which can be solved for θc. Together with (4) this yields

fa,d(t) = f0(t) + f1(t) (11)

θc,d(t) =
kθ̇ θ̇d(t) + kθθd(t)− 1

j (f0(t)l0 − f1(t)l1)

kθ
(12)

Note that kθ is not equal to zero if the control loop around θ
has a proportional term, which is the case for the application
at hand.

B. Tracking the reference trajectory

One basic assumption of the algorithm is that the motion
of the vehicle stays close to the generated reference trajectory
qd(t). Linearizing (5) about this trajectory and input yields

˙̃q(t) =
∂f

∂q

∣∣∣∣
qd,ud

q̃(t) +
∂f

∂u

∣∣∣∣
qd,ud

ũ(t) (13)

= A(t)q̃(t) +B(t)ũ(t) (14)

with q = qd + q̃ and u = ud + ũ. Converting to a discrete
time system results in a linear time-varying system

q̃(k + 1) = AD(k)q̃(k) +BD(k)ũ(k) (15)

with k denoting a discrete time step and N being the trial
length. The dynamics (15) of a complete trial are written
in the lifted domain to exploit the repetitiveness of the

experiments and synthesize a non-causal controller

Q̃ = PŨ (16)

Q̃ =

q̃(1)
q̃(2)

...
q̃(N)

 , Ũ =

ũ(0)
ũ(1)

...
ũ(N − 1)

 (17)

P =

BD(0) 0 · · · 0

AD(1)BD(0) BD(1) · · · 0
...

. . .
...

ΦBD(0) · · · BD(N − 1)

(18)

Φ = AD(N − 1)AD(N − 2)...AD(1) (19)

where the capital letters Q̃ and Ũ indicate lifted versions of
q̃ and ũ while P denotes the matrix containing the lifted
dynamics. A widely used [1] ILC approach is

Uj+1 = L1 [Uj + L2Ej] (20)

where the index j denotes the trial, L1 and L2 denote two
filter functions (matrices), and Ej is the lifted error signal

Ej = Qd −Qj,m, Qj,m = Qj + noise (21)

with Qj,m representing noisy measurements. The presented
ILC takes advantage of the given model which captures
the essential dynamics of the underlying system. The exact
formulation of the update law depends on the assumptions
made about the noise. In case that the noise d(k) does not
change from trial to trial the system takes the form

qj,m(k) = qd(k) + q̃j(k) + d(k) (22)

Qj,m = Qd + Q̃j +D (23)

with D being the lifted constant disturbance vector, rep-
resenting modeling errors or repeatable process noise for
example. Using (16) and (21) it follows that

Qj,m = Qd + PŨj +D (24)

Ej = Qd −Qj,m = −PŨj −D (25)

Performing a single experiment or trial with Ũ0 = 0 yields
an error signal of E0 = −D. The input which minimizes the
square of the error signal is the solution of a linear least-
squares problem:

Ũ1 = arg min
Ũ
‖E‖22 = arg min

Ũ
‖PŨ +D‖22 (26)

= −P †D (27)
= Ũ0 + P †E0 (28)
= Ũ0 + L2E0 (29)

where P † indicates the pseudo-inverse

P † = lim
ε→0

(PTP + εI)−1PT , ε > 0 (30)

which can be computed by well-established methods such as
singular value decomposition (SVD). The input Ũ1 applied
to the same system (24), will result in an error of

E1 = −(I − PP †)D (31)

1733

The update law L2 = P † can be non-causal, which results
in a dense matrix P †. In case there is not only a constant
disturbance but additional white noise vj(k) that changes
from trial to trial the system takes the form

qj,m(k) = qd(k) + q̃j(k) + d(k) + vj(k) (32)

Qj,m = Qd + Q̃j +D + Vj (33)

Ej = Qd −Qj,m = −PŨj −D − Vj (34)

with Vj being the lifted noise. All components of vj(k) and
Vj are assumed to be independent and identically distributed
(iid) zero-mean Gaussian white noise. Using a similar ap-
proach as (28) for the update law results in

Ũj+1 = Ũj + αP †Ej , α ∈ (0, 1) (35)

Substituting (34) the input dynamics in the trial domain are

Ũj+1 = (I − αP †P)Ũj − αP †D − αP †Vj (36)

which can readily be shown to be equal to

Ũj+1 = −
[
1− (1− α)j+1

]
P †D

− αP †
j∑
i=0

(1− α)j−iVi (37)

while assuming Ũ0 = 0. In the limit with the number of
iterations tending towards infinity the input and error become

Ũ∞ = −P †D − P †W (38)
E∞ = −[I − PP †]D − V∞ + PP †W (39)

W = α

j∑
i=0

(1− α)j−iVi (40)

while introducing the equivalent noise vector W

E[W] = 0, E[WWT] =
α

2− α
E[V V T] (41)

The parameter α serves as a tuning parameter to regulate
the influence of Vj . For α approaching 1 the variance is
not reduced, it is the same as performing the update only
once. For α approaching zero the solution tends towards the
optimum, i.e. minimizes the influence of Vj . The downside
is that the number of iterations required to get this solution
tends towards infinity. In practice the trade-off has to be
somewhere in between.

In addition to the update law L2 it is possible to introduce
a low-pass filter in L1, which rejects high frequency noise
that gets injected by the measurements.

The algorithm terminates successfully if the error Ej is
smaller than a specified threshold. In that case the final
input is denoted ŨM and the final experimental trajectory
is denoted Q̃M .

IV. EXTENDING THE MANEUVER

In the previous section an algorithm was presented which
iteratively tracks a given trajectory. In this section a method is
proposed which facilitates the tracking of qd,2(t), assuming
that it is already known how to track qd,1(t), with qd,1(t)
and qd,2(t) being similar. The most straightforward approach

is the direct application of the algorithm from Section III.
However, this would neglect valuable information gained
from previous experiments. A better method is to utilize the
final input ŨM,1 and trajectory Q̃M,1 from tracking qd,1(t)
in order to provide better initial guesses for the tracking of
qd,2(t). The approach described here involves the adjustment
of the model parameters ρ (7). The goal is to adjust the
nonlinear model such that the model (5) in conjunction with
the real input explains the real output, i.e.

qM,1(k) = qth,1(k), k ∈ [1, N] (42)

with

qth,1(k) =
∫ t(k)

0

f(ρ, q(τ), uM,1(τ))dτ, q(0) = qM,1(0)(43)

Using lifted vectors this can be posed as a nonlinear quadratic
optimization problem

ρ∗ = arg min
ρ
‖QM,1 −Qth,1‖22 (44)

This optimal ρ∗ is then substituted into the model (5) to
provide the basis for the algorithm as described in Section
III.

The selection of adjustment parameters can be crucial
for the convergence of an optimization process involving a
nonlinear system. The particular vector (7) has been chosen
since it allows the adjustment of the relationships between
inputs and states. Further, it provides good results in practice,
see Section V. However, it should be noted that this selection
is not unique and that other parameter vectors could provide
similar results.

The easiest approach is to define a ρ which is valid
over the entire duration of the trial. However, to improve
performance of the adjustment process it is possible to
define Nρ different parameter sets ρn which are valid during
consecutive intervals [kρ,n,0, kρ,n,f] of equal size ∆kρ, i.e.

kρ,n,f + 1 = kρ,n+1,0 (45)
kρ,n,f − kρ,n,0 = ∆kρ (46)

Figure 3 shows a plot of the residual of the optimization
(44) over the number of parameter sets Nρ for a typical
experimental result (Q̃M , ŨM). For the actual experiments

Fig. 3. Residual of Optimization over Number of Parameter Sets

1734

Nρ was set to four. The values of ρ∗n are not unreasonably
different from the unadjusted ρ0, as can be seen in Table I.

TABLE I
COMPARISON OF ρ

Parameter m [kg] l0 [m] l1 [m] θδ [rad]

ρ0 5.6 0.2623 0.2623 0

ρ∗1 5.6318 0.2203 0.2233 -0.0054
ρ∗2 5.4785 0.2059 0.1985 -0.0343
ρ∗3 5.4744 0.2023 0.1973 0.1308
ρ∗4 5.5770 0.1729 0.1649 0.0363

V. IMPLEMENTATION AND RESULTS

The algorithm was applied to the UAV shown in Figure 1.
The iterative part of the ILC computations is implemented
in C++ and executed while the vehicle is airborne. The
computation of a single ILC iteration involves nonlinear
transformations from 3D measurements to the 2D problem,
low-pass filtering, and solving the LLS problem (26) by
applying SVD. It takes about 5 to 10 seconds to complete
one iteration on a 650 MHz Pentium processor. Therefore it
is possible to perform all iterations necessary for successful
termination of the algorithm during a single flight without
having to land and recharge the batteries. The rest of the
algorithm, such as solving the OCP and adjusting the pa-
rameter vector, is implemented in Matlab, since there is no
need for online computation.

A side-to-side motion was selected as a characteristic
trajectory to show the capabilities of the algorithm. Hovering
at position q0 the vehicle was required to move to position qf
as quickly as possible and come to a full stop. This motion
involves a significant amount of nonlinearities due to the
quick acceleration and deceleration phases. Further, the bank-
ing of the vehicle in combination with high linear velocities
was likely to introduce complex fluid dynamic effects. These
effects were not explicitly modeled but expected to be part of
the disturbance D, which the algorithm had to compensate
for.

For the first motion initial and final states were defined as

q0,1 =
[

0 0 0 0 0 0
]T

(47)

qf,1 =
[

1.0 m 0 0 0 0 0
]T

(48)

The requirement for successful termination of the ILC was

‖qd,1(N)− qM,1(N)‖2 < 0.2 (49)

while the parameter α in the ILC update law was set to
0.3 to provide a trade-off between rejection of white noise
and speed of convergence. Applying the algorithm to the real
system led to convergence in 9 iterations. Figure 4 depicts the
error qd,1(t)−qj,1(t) for different iterations j, visualizing the
convergence of each state. In the first iteration the errors of x
and ẋ tended to grow during the course of the motion, while
the errors of the other states oscillated about zero. In the
ninth iteration the magnitude of all errors was significantly

Fig. 4. Maneuver 1, State Error

reduced. The error norm was reduced from 0.9857 after
iteration 1 to 0.0922 after iteration 9.

The next maneuver was a side-to-side motion over 1.5 m,
intended to excite more nonlinear behavior of the system.

q0,2 =
[

0 0 0 0 0 0
]T

(50)

qf,2 =
[

1.5 m 0 0 0 0 0
]T

(51)

Learning this maneuver without utilizing any previous
knowledge from maneuver 1 resulted in successful termi-
nation after 8 iterations, which is comparable to maneuver
1. However, the initial transients were more severe. The
vehicle was close to becoming unstable or colliding with
the boundaries of the airspace. Figure 5 shows the error
qd,2(t) − qj,2(t) for different iterations j. The error norm
was reduced from 0.9565 after iteration 1 to 0.1705 after
iteration 8.

Maneuver 2 was then compared to the approach described
in Section IV. The model was adjusted based on the results
from maneuver 1 and the 1.5 m side-to-side motion was
relearned, resulting in convergence after 7 iterations with a
final error norm of 0.1579. While the improvement in the
number of iterations can be attributed to noise in the learning
process it should be noted that the initial transients were
much smaller than for either maneuver 1 or 2, see Figure
6. This shows that it can be beneficial to take advantage of

1735

Fig. 5. Maneuver 2, State Error

previously gained information by adjusting the underlying
model. The legend for Figure 6 is the same as for Figure 5.

VI. CONCLUSION

An algorithm has been presented which enables a system
to iteratively perform an aggressive motion, given a simple
model which captures the essential dynamics of the system.
Expressing the problem in the lifted domain allows the
synthesis of a non-causal controller, which can anticipate
recurring disturbances and compensate for them by adjusting
a feedforward signal. The controller synthesis is formulated
as a LLS problem, which can be readily solved and executed
online with modest computational resources. Using the data
from a well tracked trajectory it is possible to adjust the
model in order to learn a motion which is similar to the
original reference. The algorithm has been successfully ap-
plied to a quadrotor UAV, reducing the error norm of the
desired maneuver by an order of magnitude.

REFERENCES

[1] Bristow D.A., Tharayil M., Alleyne A.G.: “A survey of iterative
learning control”, IEEE Control Systems Magazine, Vol. 26, No. 3,
pp. 96-114, 2006

[2] Chen Y.Q., Moore K.L.: “A Practical Iterative Learning Path-
Following Control of an Omni-Directional Vehicle”, Special Issue on
Iterative Learning Control, Asian Journal of Control, Vol. 4, No. 1,
pp. 90-98, 2002

Fig. 6. Maneuver 3, State Error

[3] Ghosh J., Paden B.: “Pseudo-inverse based iterative learning control
for nonlinear plants with disturbances”, Proceedings of the 38th IEEE
Conference on Decision and Control, Vol. 5, pp. 5206-5212, 1999,
DOI 10.1109/CDC.1999.833379

[4] Chin I., Qin S.J., Lee K.S., Cho M.: “A two-stage iterative learning
control technique combined with real-time feedback for independent
disturbance rejection”, Automatica, Vol. 40, No. 11, pp. 1913-1922,
2004

[5] Lee K.S., Lee J.H., Chin I.S., Lee H.J.: “A model predictive control
technique for batch processes and its application to temperature
tracking control of an experimental batchreactor”, A.I.Ch.E. Journal,
Vol. 45, No. 10, pp. 21752187, 1999

[6] Lee J.H., Lee K.S., Kim W.C.: “Model-based iterative learning control
with a quadratic criterion for time-varying linear systems”, Automat-
ica, Vol. 36, pp. 641657, 2000

[7] Cho M., Lee Y., Joo S., Lee K.S.: “Semi-Empirical Model-Based
Multivariable Iterative Learning Control of an RTP System”, IEEE
Transactions on Semiconductor Manufacturing, Vol. 18, No. 3, pp.
430-439, 2005

[8] Rice J.K., Verhaegen M.: “Lifted repetitive learning control for
stochastic LTV systems: A structured matrix approach”, Submitted
to: Automatica, March, 2007

[9] de Roover D., Bosgra O.H.: “Synthesis of robust multivariable iterative
learning controllers with application to a wafer stage motion system”,
Int. J. Contr., vol. 73, no. 10, pp. 968979, 2000

[10] Mezghani M., Roux G., Cabassud M., Le Lann M.V., Dahhou B.,
Casamatta G.: “Application of iterative learning control to an exother-
mic semibatch chemical reactor”, IEEE Trans. Contr. Syst. Technol.,
vol. 10, no. 6, pp. 822834, 2002

[11] Norrlof M.: “An adaptive iterative learning control algorithm with
experiments on an industrial robot”, IEEE Trans. Robot. Automat.,
vol. 18, no. 2, pp. 245251, 2002

[12] Schwartz A., Polak E., Chen Y.: “RIOTS 95”, Optimal Control
Toolbox for Matlab V6.5

1736

